Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Cell ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39094568

RESUMO

Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.

2.
BMC Genomics ; 25(1): 711, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044136

RESUMO

BACKGROUND: Bacterial spot of pepper (BSP), caused by four different Xanthomonas species, primarily X. euvesicatoria (Xe), poses a significant challenge in pepper cultivation. Host resistance is considered the most important approach for BSP control, offering long-term protection and sustainability. While breeding for resistance to BSP for many years focused on dominant R genes, introgression of recessive resistance has been a more recent focus of breeding programs. The molecular interactions underlying recessive resistance remain poorly understood. RESULTS: In this study, transcriptomic analyses were performed to elucidate defense responses triggered by Xe race P6 infection by two distinct pepper lines: the Xe-resistant line ECW50R containing bs5, a recessive resistance gene that confers resistance to all pepper Xe races, and the Xe-susceptible line ECW. The results revealed a total of 3357 upregulated and 4091 downregulated genes at 0, 1, 2, and 4 days post-inoculation (dpi), with the highest number of differentially expressed genes (DEGs) observed at 2 dpi. Pathway analysis highlighted DEGs in key pathways such as plant-pathogen interaction, MAPK signaling pathway, plant hormone signal transduction, and photosynthesis - antenna proteins, along with cysteine and methionine metabolism. Notably, upregulation of genes associated with PAMP-Triggered Immunity (PTI) was observed, including components like FLS2, Ca-dependent pathways, Rboh, and reactive oxygen species (ROS) generation. In support of these results, infiltration of ECW50R leaves with bacterial suspension of Xe led to observable hydrogen peroxide accumulation without a rapid increase in electrolyte leakage, suggestive of the absence of Effector-Triggered Immunity (ETI). Furthermore, the study confirmed that bs5 does not disrupt the effector delivery system, as evidenced by incompatible interactions between avirulence genes and their corresponding dominant resistant genes in the bs5 background. CONCLUSION: Overall, these findings provide insights into the molecular mechanisms underlying bs5-mediated resistance in pepper against Xe and suggest a robust defense mechanism in ECW50R, primarily mediated through PTI. Given that bs5 provides early strong response for resistance, combining this resistance with other dominant resistance genes will enhance the durability of resistance to BSP.


Assuntos
Capsicum , Resistência à Doença , Perfilação da Expressão Gênica , Doenças das Plantas , Xanthomonas , Capsicum/genética , Capsicum/microbiologia , Capsicum/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
3.
J Fungi (Basel) ; 10(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057347

RESUMO

Plasmodiophora brassicae is an obligate intracellular parasitic protist that causes clubroot disease on cruciferous plants. So far, some low-molecular-weight secreted proteins from P. brassicae have been reported to play an important role in plant immunity regulation, but there are few reports on its high-molecular-weight secreted proteins. In this study, 35 putative high-molecular-weight secreted proteins (>300 amino acids) of P. brassicae (PbHMWSP) genes that are highly expressed during the infection stage were identified using transcriptome analysis and bioinformatics prediction. Then, the secretory activity of 30 putative PbHMWSPs was confirmed using the yeast signal sequence trap system. Furthermore, the genes encoding 24 PbHMWSPs were successfully cloned and their functions in plant immunity were studied. The results showed that ten PbHMWSPs could inhibit flg22-induced reactive oxygen burst, and ten PbHMWSPs significantly inhibited the expression of the SA signaling pathway marker gene PR1a. In addition, nine PbHMWSPs could inhibit the expression of a marker gene of the JA signaling pathway. Therefore, a total of 19 of the 24 tested PbHMWSPs played roles in suppressing the immune response of plants. Of these, it is worth noting that PbHMWSP34 can inhibit the expression of JA, ET, and several SA signaling pathway marker genes. The present study is the first to report the function of the high-molecular-weight secreted proteins of P. brassicae in plant immunity, which will enrich the theory of interaction mechanisms between the pathogens and plants.

4.
J Exp Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981015

RESUMO

Phytocytokines regulate plant immunity by cooperating with cell-surface proteins. Populus trichocarpa RUST INDUCED SECRETED PEPTIDE 1 (PtRISP1) exhibits an elicitor activity in poplar, as well as a direct antimicrobial activity against rust fungi. PtRISP1 gene directly clusters with a gene encoding a leucine-rich repeat receptor protein (LRR-RP), that we termed RISP-ASSOCIATED LRR-RP (PtRALR). In this study, we used phylogenomics to characterize the RISP and RALR gene families, and molecular physiology assays to functionally characterize RISP/RALR pairs. Both RISP and RALR gene families specifically evolved in Salicaceae species (poplar and willow), and systematically cluster in the genomes. Despite a low sequence identity, Salix purpurea RISP1 (SpRISP1) shows properties and activities similar to PtRISP1. Both PtRISP1 and SpRISP1 induced a reactive oxygen species (ROS) burst and mitogen-activated protein kinases (MAPKs) phosphorylation in Nicotiana benthamiana leaves expressing the respective clustered RALR. PtRISP1 also triggers a rapid stomatal closure in poplar. Altogether, these results suggest that plants evolved phytocytokines with direct antimicrobial activities, and that the genes coding these phytocytokines co-evolved and physically cluster with genes coding LRR-RPs required to initiate immune signaling.

5.
Environ Sci Technol ; 58(28): 12685-12696, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959026

RESUMO

Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.


Assuntos
Oxirredução , Zircônio , Catálise , Zircônio/química , Álcalis/química , Platina/química
6.
J Exp Bot ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824407

RESUMO

The cuticle constitutes the outermost defensive barrier of most land plants. It comprises a polymeric matrix - cutin, surrounded by soluble waxes. Moreover, the cuticle constitutes the first line of defense against pathogen invasion, while also protecting the plant from many abiotic stresses. Aliphatic monomers in cutin have been suggested to act as immune elicitors in plants. This study analyses the potential of cutin oligomers to activate rapid signaling outputs reminiscent of pattern-triggered immunity (PTI) in the model plant Arabidopsis. Cutin oligomeric mixtures led to Ca2+ influx and MAPK activation. Comparable responses were measured for cutin, which was also able to induce a reactive oxygen species (ROS) burst. Furthermore, cutin oligomer treatment resulted in a unique transcriptional reprogramming profile, having many archetypal features of PTI. Targeted spectroscopic and spectrometric analyses of the cutin oligomers suggest that the elicitors compounds consist mostly of two up to three 10,16-dihydroxyhexadecanoic acid monomers linked together through ester bonds. This study demonstrates that cutin breakdown products can act as inducers of early plant immune responses, which underlying mechanisms of perception and potential use in agriculture warrant further investigation.

7.
Front Plant Sci ; 15: 1358605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835867

RESUMO

Pyramiding resistance genes may expand the efficacy and scope of a canola variety against clubroot (Plasmodiophora brassicae), a serious threat to canola production in western Canada. However, the mechanism(s) of multigenic resistance, especially the potential interaction among clubroot resistance (CR) genes, are not well understood. In this study, transcriptome was compared over three canola (Brassica napus L.) inbred/hybrid lines carrying a single CR gene in chromosome A03 (CRaM, Line 16) or A08 (Crr1rutb, Line 20), and both genes (CRaM+Crr1rutb, Line 15) inoculated with a field population (L-G2) of P. brassicae pathotype X, a new variant found in western Canada recently. The line16 was susceptible, while lines 15 and 20 were partially resistant. Functional annotation identified differential expression of genes (DEGs) involved in biosynthetic processes responsive to stress and regulation of cellular process; The Venn diagram showed that the partially resistant lines 15 and 20 shared 1,896 differentially expressed genes relative to the susceptible line 16, and many of these DEGs are involved in defense responses, activation of innate immunity, hormone biosynthesis and programmed cell death. The transcription of genes involved in Pathogen-Associated Molecular Pattern (PAMP)-Triggered and Effector-Triggered Immunity (PTI and ETI) was particularly up-regulated, and the transcription level was higher in line 15 (CRaM + Crr1rutb) than in line 20 (Crr1rutb only) for most of the DEGs. These results indicated that the partial resistance to the pathotype X was likely conferred by the CR gene Crr1rutb for both lines 15 and 20 that functioned via the activation of both PTI and ETI signaling pathways. Additionally, these two CR genes might have synergistic effects against the pathotype X, based on the higher transcription levels of defense-related DEGs expressed by inoculated line 15, highlighting the benefit of gene stacking for improved canola resistance as opposed to a single CR gene alone.

8.
Physiol Mol Biol Plants ; 30(4): 587-604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737322

RESUMO

The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.

9.
Mol Plant ; 17(5): 699-724, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38594902

RESUMO

Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.


Assuntos
Parede Celular , Resistência à Doença , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Plantas/imunologia , Imunidade Vegetal/fisiologia
10.
aBIOTECH ; 5(1): 46-51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576430

RESUMO

Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. Decreased grain size1 (DGS1), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2-E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00137-9.

11.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670067

RESUMO

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , Humanos
12.
Plant Cell Physiol ; 65(5): 681-693, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38549511

RESUMO

In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.


Assuntos
Microbiota , Imunidade Vegetal , Raízes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/imunologia , Microbiota/fisiologia , Simbiose , Microbiologia do Solo , Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo
13.
Plant Biotechnol J ; 22(8): 2113-2128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470397

RESUMO

Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.


Assuntos
Imunidade Vegetal , Transdução de Sinais , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo , Resistência à Doença/imunologia
15.
Plant Cell Environ ; 47(6): 2074-2092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409861

RESUMO

Plants trigger a robust immune response by activating massive transcriptome reprogramming through crosstalk between PTI and ETI. However, how PTI and ETI contribute to the quantitative or/and qualitative output of immunity and how they work together when both are being activated were unclear. In this study, we performed a comprehensive overview of pathogen-triggered transcriptomic reprogramming by analyzing temporal changes in the transcriptome up to 144 h after Colletotrichum gloeosporioides inoculated in Populus. Moreover, we constructed a hierarchical gene regulatory network of PagWRKY18 and its potential target genes to explore the underlying regulatory mechanisms of PagWRKY18 that are not yet clear. Interestingly, we confirmed that PagWRKY18 protein can directly bind the W-box elements in the promoter of a transmembrane leucine-rich repeat receptor-like kinase, PagSOBIR1 gene, to trigger PTI. At the same time, PagWRKY18 functions in disease tolerance by modulation of ROS homeostasis and induction of cell death via directly targeting PagGSTU7 and PagPR4 respectively. Furthermore, PagPR4 can interact with PagWRKY18 to inhibit the expression of PagPR4 genes, forming a negative feedback loop. Taken together, these results suggest that PagWRKY18 may be involved in regulating crosstalk between PTI and ETI to activate a robust immune response and maintain intracellular homeostasis.


Assuntos
Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Proteínas de Plantas , Populus , Populus/genética , Populus/imunologia , Populus/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Colletotrichum/fisiologia , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
16.
Gene ; 907: 148260, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38342252

RESUMO

Pokkah Boeng disease (PBD), caused by Fusarium sacchari, severely affects sugarcane yield and quality. Necrosis-inducing secreted protein 1 (Nis1) is a fungal secreted effector that induces necrotic lesions in plants. It interacts with host receptor-like kinases and inhibits their kinase activity. FsNis1 contains the Nis1 structure and triggered a pathogen-associated molecular pattern-triggered immune response in Nicotiana benthamiana, as reflected by causing reactive oxygen species production, callose accumulation, and the upregulated expression of defense response genes. Knockout of this gene in F. sacchari revealed a significant reduction in its pathogenicity, whereas the pathogenicity of the complementary mutant recovered to the wild-type levels, making this gene an important virulence factor for F. sacchari. In addition, the signal peptide of FsNis1 was required for the induction of cell death and PTI response in N. benthamiana. Thus, FsNis1 may not only be a key virulence factor for F. sacchari but may also induce defense responses in plants. These findings provide new insights into the function of Nis1 in host-pathogen interactions.


Assuntos
Fusarium , Fusarium/genética , Imunidade Vegetal/genética , Virulência/genética , Fatores de Virulência/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
17.
New Phytol ; 242(1): 170-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348532

RESUMO

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.


Assuntos
Cucumis sativus , Ribonucleases , Cucumis sativus/microbiologia , Fungos , Plantas , Imunidade , Doenças das Plantas/microbiologia , Imunidade Vegetal
18.
CVIR Endovasc ; 7(1): 20, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376801

RESUMO

BACKGROUND: Post-gastrostomy bleeding sequelae are acknowledged, with reported approaches focusing on conservative measures or surgical repair. Nonetheless, Percutaneous Thrombin Injections (PTI) role in PEG-site-related bleeding remains underexplored. PTI under ultrasound guidance is an advocated management strategy for stoma-site bleeding following gastrostomy in high-risk patients, particularly those on direct oral anticoagulants. CASE PRESENTATION: This study presents three cases with multiple comorbidities who underwent PTI. Resulting in immediate resolution of bleeding, no systemic\local effect, and no reported complications or rebleeding after a 3-6-month follow-up. CONCLUSION: The findings highlight the safety, direct complete resolution, and absence of sequelae associated with PTI, suggesting its potential as a promising technique in managing PEG stoma-related bleeding.

19.
Mol Plant Microbe Interact ; 37(2): 73-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416059

RESUMO

Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Plantas , Receptores de Reconhecimento de Padrão , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença , Proteínas de Transporte , Imunidade Vegetal/genética , Doenças das Plantas
20.
ACS Nano ; 18(6): 4775-4782, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38285709

RESUMO

The interaction between a metal and a support, which is known as the metal-support interaction, often plays a determining role in the catalytic properties of supported metal catalysts. Herein, we have developed model Pt/CeO2 catalysts, which enabled us to investigate the interface atomic and electronic structures between Pt and the {001}, {011}, and {111} planes of CeO2 using scanning transmission electron microscopy and electron energy-loss spectroscopy. We found that the number of Ce3+ ions around the Pt nanoparticles followed the order {001} > {011} > {111}, which was the opposite order of the generally accepted stability of low index surfaces of CeO2. Systematic first-principles calculations revealed that the presence of Pt nanoparticles facilitated the formation of oxygen vacancies and that the appearance of the Ptδ+ state was preferred when Pt nanoparticles were in contact with CeO2 {001} planes due to direct charge transfer from Pt to CeO2. These results provide important insights into the nature of the metal-support interaction for a comprehensive understanding of the properties of supported metal catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA