Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474775

RESUMO

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409287

RESUMO

Ginkgolic acid (C13:0) (GA), isolated from Ginkgo biloba, is a potential therapeutic agent for type 2 diabetes. A series of GA analogs were designed and synthesized for the evaluation of their structure-activity relationship with respect to their antidiabetic effects. Unlike GA, the synthetic analog 1e exhibited improved inhibitory activity against PTPN9 and significantly stimulated glucose uptake via AMPK phosphorylation in differentiated 3T3-L1 adipocytes and C2C12 myotubes; it also induced insulin-dependent AKT activation in C2C12 myotubes in a concentration-dependent manner. Docking simulation results showed that 1e had a better binding affinity through a unique hydrophobic interaction with a PTPN9 hydrophobic groove. Moreover, 1e ameliorated palmitate-induced insulin resistance in C2C12 cells. This study showed that 1e increases glucose uptake and suppresses palmitate-induced insulin resistance in C2C12 myotubes via PTPN9 inhibition; thus, it is a promising therapeutic candidate for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/metabolismo , Salicilatos , Transdução de Sinais , Relação Estrutura-Atividade
3.
Bioengineered ; 13(3): 4991-5004, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35156900

RESUMO

Circular RNAs play important roles in cancer biology. In this research, we explored the underlying function and mechanism of cirMMD_007 in lung adenocarcinoma (LC). Clinical lung adenocarcinoma samples were obtained from surgery. Bioinformatic databases were used to predict miRNAs that can potentially target circRNAs and miRNA target genes. hsa_circMMD_007, miR-197-3p, and PTPN9 mRNA expressions were investigated by qRT-PCR. Protein expressions were examined using Western blot. The proliferation abilities were assessed by Cell Counting Kit-8 assays. Wound healing cell migration assay was applied to evaluate cell migration ability. Luciferase reporter assay and rescue experiments were then performed to elucidate the underlying mechanism. We found that the expression of circMMD_007 was abnormally increased in LC. The expression of circMMD_007 was higher in advanced stages. Knockout of circMMD_007 hindered the tumorigenesis of LC in vivo and in vitro. circMMD_007 could negatively regulate the expression of miR-197-3p. PTPN9 behaved to be a molecular target of miR-197-3p. In summary, this research demonstrated that circular RNA circMMD_007 could promote the oncogenic effects in the progression of LC through miR-197-3p/PTPN9 axis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Proteínas Tirosina Fosfatases não Receptoras , RNA Circular , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , RNA Circular/genética
4.
Biomolecules ; 12(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35204821

RESUMO

Protein tyrosine phosphatases (PTPs), along with protein tyrosine kinases, control signaling pathways involved in cell growth, metabolism, differentiation, proliferation, and survival. Several PTPs, such as PTPN1, PTPN2, PTPN9, PTPN11, PTPRS, and DUSP9, disrupt insulin signaling and trigger type 2 diabetes, indicating that PTPs are promising drug targets for the treatment or prevention of type 2 diabetes. As part of an ongoing study on the discovery of pharmacologically active bioactive natural products, we conducted a phytochemical investigation of African mango (Irvingia gabonensis) using liquid chromatography-mass spectrometry (LC/MS)-based analysis, which led to the isolation of terminalin as a major component from the extract of the seeds of I. gabonensis. The structure of terminalin was characterized by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy. Moreover, terminalin was evaluated for its antidiabetic property; terminalin inhibited the catalytic activity of PTPN1, PTPN9, PTPN11, and PTPRS in vitro and led to a significant increase in glucose uptake in differentiated C2C12 muscle cells, indicating that terminalin exhibits antidiabetic effect through the PTP inhibitory mechanism. These findings suggest that terminalin derived from African mango could be used as a functional food ingredient or pharmaceutical supplement for the prevention of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Mangifera , Celulose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Mangifera/metabolismo , Proantocianidinas
5.
Neurol Sci ; 43(4): 2823-2830, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34373992

RESUMO

PURPOSE: Alcohol-induced osteonecrosis femoral head necrosis (ONFH) is a disease that seriously affects human health. Abnormal expression of L3MBTL3/PTPN9 gene can cause a variety of human diseases. The purpose of this study is to investigate the effect of L3MBTL3/PTPN9 gene polymorphism on the susceptibility of alcohol-induced ONFH in Chinese Han population. METHODS: A total of 308 alcohol-induced ONFH patients and 425 healthy controls were enrolled in this case-control study. Alleles, genotypes, genetic models, haplotypes, and multifactor dimensionality reduction analyses (MDR) based on age-corrected by using odds ratio (OR) and 95% confidence interval (CI) were performed. RESULTS: Our result revealed rs2068957 in the L3MBTL3 gene increased the risk of alcohol ONFH under the recessive model after correction. Besides, we also found that rs75393192 in the PTPN9 gene was a protective site in stratification over 40 years of age and stage. In stratified analysis of necrotic sites, we only found that rs2068957 was associated with increased susceptibility of alcohol-induced ONFH under the co-dominant model and recessive model. Haplotype "GC" in the block (rs76107647|rs10851882 in PTPN9 gene) significantly decreased the susceptibility of alcoholic ONFH. CONCLUSIONS: Our results provide evidence that L3MBTL3/PTPN9 polymorphisms are associated with alcohol-induced ONFH risk in Chinese Han population.


Assuntos
Povo Asiático , Etnicidade , Necrose da Cabeça do Fêmur , Predisposição Genética para Doença , Polimorfismo Genético , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Etnicidade/genética , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/epidemiologia , Necrose da Cabeça do Fêmur/genética , Predisposição Genética para Doença/genética , Haplótipos , Humanos , Pessoa de Meia-Idade , Polimorfismo Genético/genética
6.
J Nutr Biochem ; 97: 108801, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119630

RESUMO

An evaluation of the impact of vitamin E deficiency on expression of the alpha-tocopherol transfer protein (α-TTP) and related CRAL_TRIO genes was undertaken using livers from adult zebrafish based on the hypothesis that increased lipid peroxidation would modulate gene expression. Zebrafish were fed either a vitamin E sufficient (E+) or deficient (E-) diet for 9 months, then fish were euthanized, and livers were harvested. Livers from the E+ relative to E- fish contained 40-times more α-tocopherol (P <0.0001) and one fourth the malondialdehyde (P = 0.0153). RNA was extracted from E+ and E- livers, then subject to evaluation of gene expression of ttpa and other genes of the CRAL_TRIO family, genes of antioxidant markers, and genes related to lipid metabolism. Ttpa expression was not altered by vitamin E status. However, one member of the CRAL_TRIO family, tyrosine-protein phosphatase non-receptor type 9 gene (ptpn9a), showed a 2.4-fold increase (P = 0.029) in E- relative to E+ livers. Further, we identified that the gene for choline kinase alpha (chka) showed a 3.0-fold increase (P = 0.010) in E- livers. These outcomes are consistent with our previous findings that show vitamin E deficiency increased lipid peroxidation causing increases in phospholipid turnover.


Assuntos
Proteínas de Transporte/genética , Expressão Gênica , Fígado/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Deficiência de Vitamina E/genética , Proteínas de Peixe-Zebra/genética , Animais , Antioxidantes , Proteínas de Transporte/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Malondialdeído/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Deficiência de Vitamina E/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , alfa-Tocoferol/metabolismo
7.
Autophagy ; 17(10): 2750-2765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112705

RESUMO

Macroautophagy/autophagy is an evolutionarily conserved intracellular pathway for the degradation of cytoplasmic materials. Under stress conditions, autophagy is upregulated and double-membrane autophagosomes are formed by the expansion of phagophores. The ATG16L1 precursor fusion contributes to development of phagophore structures and is critical for the biogenesis of autophagosomes. Here, we discovered a novel role of the protein tyrosine phosphatase PTPN9 in the regulation of homotypic ATG16L1 vesicle fusion and early autophagosome formation. Depletion of PTPN9 and its Drosophila homolog Ptpmeg2 impaired autophagosome formation and autophagic flux. PTPN9 colocalized with ATG16L1 and was essential for homotypic fusion of ATG16L1+ vesicles during starvation-induced autophagy. We further identified the Q-SNARE VTI1B as a substrate target of PTPN9 phosphatase. Like PTPN9, the VTI1B nonphosphorylatable mutant but not the phosphomimetic mutant enhanced SNARE complex assembly and autophagic flux. Our findings highlight the important role of PTPN9 in the regulation of ATG16L1+ autophagosome precursor fusion and autophagosome biogenesis through modulation of VTI1B phosphorylation status.Abbreviations: csw: corkscrew; EBSS: Earle's balanced salt solution; ERGIC: ER-Golgi intermediate compartment; ESCRT: endosomal sorting complexes required for transport; mop: myopic; NSF: N-ethylmaleimide-sensitive factor; PAS: phagophore assembly site; PolyQ: polyglutamine; PtdIns3P: phosphatidylinositol-3-phosphate; PTK: protein tyrosine kinase; PTM: posttranslational modification; PTP: protein tyrosine phosphatase; PTPN23/HD-PTP: protein tyrosine phosphatase non-receptor type 23; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; STX7: syntaxin 7; STX8: syntaxin 8; STX17: syntaxin 17; VAMP3: vesicle associated membrane protein 3; VAMP7: vesicle associated membrane protein 7; VTI1B: vesicle transport through interaction with t-SNAREs 1B; YKT6: YKT6 v-SNARE homolog; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Macroautofagia , Proteínas Tirosina Fosfatases não Receptoras , Proteínas Qb-SNARE , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Células HeLa , Humanos , Fusão de Membrana , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Qb-SNARE/metabolismo
8.
Bioorg Chem ; 90: 103087, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284101

RESUMO

Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding to PTPN9 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Taninos Hidrolisáveis/farmacologia , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Fosforilação , Transdução de Sinais
9.
Mol Ther Nucleic Acids ; 16: 15-25, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825669

RESUMO

Studies demonstrate that microRNA-126 plays a critical role in promoting angiogenesis. However, its effects on angiogenesis following ischemic stroke are unclear. Here, we explored the effect of microRNA-126-3p and microRNA-126-5p on angiogenesis and neurogenesis after brain ischemia. We demonstrated that both microRNA (miRNA)-126-3p and microRNA-126-5p increased the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with the scrambled miRNA control (p < 0.05). Transferring microRNA-126 into a mouse middle cerebral artery occlusion model via lentivirus, we found that microRNA-126 overexpression increased the number of CD31+/BrdU+ (5-bromo-2'-deoxyuridine-positive) proliferating endothelial cells and DCX+/BrdU+ neuroblasts in the ischemic mouse brain, improved neurobehavioral outcomes (p < 0.05), and reduced brain atrophy volume (p < 0.05) compared with control mice. Western blot results showed that AKT and ERK signaling pathways were activated in the lentiviral-microRNA-126-treated group (p < 0.05). Both PCR and western blot results demonstrated that tyrosine-protein phosphatase non-receptor type 9 (PTPN9) was decreased in the lentiviral-microRNA-126-treated group (p < 0.05). Dual-luciferase gene reporter assay also showed that PTPN9 was the direct target of microRNA-126-3p and microRNA-126-5p in the ischemic brain. We demonstrated that microRNA-126-3p and microRNA-126-5p promoted angiogenesis and neurogenesis in ischemic mouse brain, and further improved neurobehavioral outcomes. Our mechanistic study further showed that microRNA-126 mediated angiogenesis through directly inhibiting its target PTPN9 and activating AKT and ERK signaling pathways.

10.
Cancer Manag Res ; 11: 1309-1319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804683

RESUMO

BACKGROUND: Accumulating evidence has shown that protein tyrosine phosphatases (PTPs) are involved in regulating the transduction of many signaling pathways and play important roles in modulating the progression of some cancers, but the functions of PTPs in cancers have not been well elucidated until now. Here, we aimed to identify the roles of protein tyrosine phosphatase nonreceptor type 9 (PTPN9), a cytoplasmic PTP, in the development of colorectal cancer and elucidate the regulatory mechanism involved. MATERIALS AND METHODS: Cell viability assessment, colony formation assay, caspase-3 and caspase-9 activity assay, real-time PCR, and Western blot analysis were applied. RESULTS: Our results showed that PTPN9 expression was frequently downregulated in colorectal cancer tissues compared with adjacent normal tissues. Overexpression of PTPN9 mitigated cell growth and colony formation and induced cell apoptosis in colorectal cancer. Conversely, PTPN9 knockdown promoted cell growth and survival. Moreover, PTPN9 negatively regulated the activation of Stat3 and depressed its nuclear translocation in colorectal cancer. The effects of PTPN9 knockdown on cell apoptosis were attenuated by inhibition of the Stat3 pathway. CONCLUSION: These results indicate that PTPN9 inhibits cell growth and survival by repressing the activation of Stat3 in colorectal cancer, which suggests an important underlying mechanism of regulating cell growth and provides a novel candidate therapeutic target for colorectal cancer.

11.
Saudi J Biol Sci ; 25(5): 863-867, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30108433

RESUMO

Up to date, the cervical cancer remains to be one of the leading gynecological malignancies worldwide. MicroRNAs (miRNAs) play critical roles in the process of tumor initiation and progression. However, miR-96 has rarely been investigated in human cervical carcinoma. We aimed to investigate the biological function and underlying molecular mechanism of miR-96 in human cervical carcinoma. MiR-96 levels were determined by qRT-PCR. Protein tyrosine phosphatase, non-receptor type 9 (PTPN9) mRNA and protein levels were investigated by qRT-PCR and western blotting. The cellular proliferation in cervical cells was monitored by CyQuant assay. Soft agar assay was employed to determine the tumorigenicity. 3' UTR luciferase assay was used to validate the target gene of miR-96. SPSS was used to analyze statistical significance in different treatment. MiR-96 was dramatically upregulated in human cervical tumor tissues. Overexpression of miR-96 was found to significantly promote the cellular proliferation and tumorigenicity of cervical cells. Furthermore, we showed that PTPN9 was a direct target gene of miR-96 and had opposite effect to those of miR-96 on cervical cells. MiR-96 may promote the cellular proliferation and tumorigenicity of cervical cells by silencing PTPN9. Our study highlights an importantly regulatory role of miR-96 and suggests that an appropriate manipulation of miR-96 may be a new treatment of human cervical carcinoma in the future.

12.
Bioorg Chem ; 81: 264-269, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30153591

RESUMO

Several protein tyrosine phosphatases (PTPs) that disrupt the insulin-signaling pathway were investigated by siRNAs to identify potential antidiabetic targets. Individual knockdown of PTPN9 and DUSP9 in 3T3-L1 preadipocytes increased AMPK phosphorylation, respectively, and furthermore, concurrent knockdown of both PTPN9 and DUSP9 synergistically increased AMPK phosphorylation. Next, 658 natural products were screened to identify dual inhibitors of both PTPN9 and DUSP9. Based on the selectivity and inhibition potency of the compounds, ginkgolic acid (GA) was selected for further study as a potential antidiabetic drug candidate. GA inhibited the enzymatic activity of PTPN9 (Ki = 53 µM) and DUSP9 (Ki = 2.5 µM) in vitro and resulted in a significant increase of glucose-uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes. In addition, GA increased phosphorylation of AMPK in 3T3L1 adipocytes. In this study, GA as a dual targeting inhibitor of PTPN9 and DUSP9 increased glucose uptake in 3T3L1 and C2C12 cells by activating the AMPK signaling pathway. These results strongly suggest GA could be used as a therapeutic candidate for type 2 diabetes.


Assuntos
Fosfatases de Especificidade Dupla/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Salicilatos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Camundongos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética
13.
J Biol Chem ; 291(46): 23895-23905, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655914

RESUMO

Protein tyrosine phosphatase MEG2 (PTP-MEG2) is a unique nonreceptor tyrosine phosphatase associated with transport vesicles, where it facilitates membrane trafficking by dephosphorylation of the N-ethylmaleimide-sensitive fusion factor. In this study, we identify the neurotrophin receptor TrkA as a novel cargo whose transport to the cell surface requires PTP-MEG2 activity. In addition, TrkA is also a novel substrate of PTP-MEG2, which dephosphorylates both Tyr-490 and Tyr-674/Tyr-675 of TrkA. As a result, overexpression of PTP-MEG2 down-regulates NGF/TrkA signaling and blocks neurite outgrowth and differentiation in PC12 cells and cortical neurons.


Assuntos
Neuritos/enzimologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais/fisiologia , Animais , Camundongos , Células PC12 , Transporte Proteico/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Ratos
14.
Pathol Oncol Res ; 22(3): 555-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26715439

RESUMO

Human hepatocellular carcinoma (HCC) is one of the most common malignant cancers, whose molecular mechanisms is remains largely. PTPN9 has recently been reported to play a critical role in breast cancer development. However, the role of PTPN9 in human HCC remains elusive. The present study aimed at investigating the potential role of PTPN9 in HCC. Western blot and immunohistochemistry were used to examine the expression of PTPN9 protein in HCC and adjacent non-tumorous tissues in 45 patients. Furthermore, Cell Counting Kit-8, flow cytometry and RNA interference experiments were performed to analyze the role of PTPN9 in the regulation of HCC cell proliferation. We showed that the expression level of PTPN9 was significantly reduced in HCC, compared with adjacent non-tumorous tissues. PTPN9 expression was inversely associated with Tumor size (P = 0.014), serum AFP level (P = 0.004) and Ki-67 expression. Low expression of PTPN9 predicted poor survival in HCC patients. Moreover, PTPN9 interference assay that PTPN9 inhibited cell proliferation in HepG2 cells. Cell apoptosis assay revealed that, silencing of PTPN9 expression significantly reduced cell apoptosis, compared with control ShRNA treatment group. Our results suggested that PTPN9 expression was down-regulated in HCC tumor tissues, and reduced PTPN9 expression was associated with worsened overall survival in HCC patients. Depletion of PTPN9 inhibits the apoptosis and promotes the proliferation of HCC cells.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Regulação para Baixo/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Apoptose/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
15.
Oncotarget ; 6(26): 21993-2005, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26023796

RESUMO

Mutational activation of BRAF(BRAF(V600E)) occurs in pediatric glioma and drives aberrant MAPK signaling independently of upstream cues. Targeted monotherapy against BRAF(V600E) displays efficacy in pre-clinical models of glioma, however xenograft tumors adapt rapidly and escape from the growth-inhibitory effects of BRAF-targeted therapy. Here, we show that intrinsic resistance to a BRAF(V600E) specific inhibitor stems, in part, from feedback activation of EGFR and downstream signaling pathways. BRAF(V600E) inhibition suppresses MAPK signaling, which in turn downregulates the EGFR phosphatase PTPN9, resulting in sustained EGFR phosphorylation and enhanced EGFR activity. We demonstrated that overexpression of PTPN9 reduces EGFR phosphorylation and cooperates with BRAF(V600E) inhibitor PLX4720 to reduce MAPK and Akt signaling, resulting in decreased glioma cell viability. Moreover, pharmacologic inhibition of EGFR combined with inhibition of BRAF(V600E) to reduce growth of glioma cell lines and orthotopic glioma xenograft by decreasing tumor cell proliferation while increasing apoptosis, with resultant significant extension of animal subject survival. Our data support clinical evaluation of BRAF(V600E) and EGFR targeted therapy in treating BRAF(V600E) glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Glioma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Distribuição Aleatória , Transdução de Sinais , Sulfonamidas/farmacologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Sci ; 127(Pt 12): 2761-70, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24727614

RESUMO

Protein tyrosine phosphatases (PTPs) are involved in hematopoiesis, but the function of many PTPs is not well characterized in vivo. Here, we have identified Ptpn9a, an ortholog of human PTPN9, as a crucial regulator of erythroid cell development in zebrafish embryos. ptpn9a, but not ptpn9b, was expressed in the posterior lateral plate mesoderm and intermediate cell mass - two primitive hematopoietic sites during zebrafish embryogenesis. Morpholino-mediated knockdown of ptpn9a caused erythrocytes to be depleted by inhibiting erythroid cell maturation without affecting erythroid proliferation and apoptosis. Consistently, both dominant-negative PTPN9 (with mutation C515S) and siRNA against PTPN9 inhibited erythroid differentiation in human K562 cells. Mechanistically, depletion of ptpn9 in zebrafish embryos in vivo or in K562 cells in vitro increased phosphorylated STAT3, and the hyper-phosphorylated STAT3 entrapped and prevented the transcription factors GATA1 and ZBP-89 (also known as ZNF148) from regulating erythroid gene expression. These findings imply that PTPN9 plays an important role in erythropoiesis by disrupting an inhibitory complex of phosphorylated STAT3, GATA1 and ZBP-89, providing new cellular and molecular insights into the role of ptpn9a in developmental hematopoiesis.


Assuntos
Células Eritroides/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Fator de Transcrição STAT3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Eritropoese , Fator de Transcrição GATA1/metabolismo , Gastrulação , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células K562 , Fosforilação , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA