Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Med Entomol ; 61(4): 1009-1015, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829822

RESUMO

House flies (Musca domestica L.) (Diptera: Muscidae) are challenging pests to control. Biological control using Carcinops pumilio beetles may help to reduce house fly populations. However, it is unknown if C. pumilio beetles are compatible with Beauveria bassiana, another house fly biological control option. Five strains of commercially available (GHA, HF23, and L90) and newly discovered (NFH10 and PSU1) strains of B. bassiana were used to test the comparative susceptibility of adult house flies and adult C. pumilio using different laboratory exposure methods. Adult house flies were susceptible to B. bassiana in contact filter paper assays (89%-98% mortality) and immersion assays (100% mortality) at the same 108 conidia suspension using 0.1% CapSil as an aqueous surfactant. Carcinops pumilio were less susceptible than flies to B. bassiana infection using the contact and immersion assays at the same 108 conidial concentration, with 4.4%-12.2% and 8.3%-24.6% mortality, respectively. Immersion in an aqueous conidial suspension resulted in higher mortality compared to contact with treated filter papers at the same 108 concentration with house flies and beetles. We conclude that C. pumilio can safely be used as a biological control agent for house flies with B. bassiana in animal production systems.


Assuntos
Beauveria , Besouros , Moscas Domésticas , Controle Biológico de Vetores , Animais , Beauveria/fisiologia , Besouros/microbiologia , Moscas Domésticas/microbiologia
2.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849129

RESUMO

Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco. In support of this model, we recently demonstrated that chromosome-associated cohesin turns over extensively during meiotic prophase and failure to load cohesin onto chromosomes after premeiotic S phase results in arm cohesion defects in Drosophila oocytes. To identify proteins required for prophase cohesion rejuvenation but not S phase establishment, we conducted a Gal4-UAS inducible RNAi screen that utilized two distinct germline drivers. Using this strategy, we identified 29 gene products for which hairpin expression during meiotic prophase, but not premeiotic S phase, significantly increased segregation errors. Prophase knockdown of Brahma or Pumilio, two positives with functional links to the cohesin loader, caused a significant elevation in the missegregation of recombinant homologs, a phenotype consistent with premature loss of arm cohesion. Moreover, fluorescence in situ hybridization confirmed that Brahma, Pumilio, and Nipped-B are required during meiotic prophase for the maintenance of arm cohesion. Our data support the model that Brahma and Pumilio regulate Nipped-B-dependent cohesin loading during rejuvenation. Future analyses will better define the mechanism(s) that govern meiotic cohesion rejuvenation and whether additional prophase-specific positives function in this process.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Proteínas de Drosophila , Oócitos , Interferência de RNA , Animais , Oócitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Feminino , Segregação de Cromossomos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética
3.
Fluids Barriers CNS ; 21(1): 52, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898501

RESUMO

Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.


Assuntos
Barreira Hematoencefálica , Claudina-5 , Proteínas de Ligação a RNA , Humanos , Claudina-5/metabolismo , Claudina-5/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Barreira Hematoencefálica/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Animais , Biossíntese de Proteínas/fisiologia , Células Endoteliais/metabolismo
4.
Cell Cycle ; 23(6): 682-692, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38794797

RESUMO

Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Macrófagos , Camundongos Knockout , Proteínas de Ligação a RNA , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Transdução de Sinais , Linhagem Celular Tumoral
5.
RNA ; 30(7): 866-890, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627019

RESUMO

The sequence-specific RNA-binding protein Pumilio (Pum) controls Drosophila development; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we use knockdown and knockout approaches coupled with RNA-seq to measure the impact of Pum on the transcriptome of Drosophila cells in culture. We also use an improved RNA coimmunoprecipitation method to identify Pum-bound mRNAs in Drosophila embryos. Integration of these data sets with the locations of Pum-binding motifs across the transcriptome reveals novel direct Pum target genes involved in neural, muscle, wing, and germ cell development and in cellular proliferation. These genes include components of Wnt, TGF-ß, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. We identify the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pum-mediated repression, and observe concordant regulation of Pum:CCR4-NOT target mRNAs. Computational modeling reveals that Pum binding, binding site number, clustering, and sequence context are important determinants of regulation. In contrast, we show that the responses of direct mRNA targets to Pum-mediated repression are not influenced by the content of optimal synonymous codons. Moreover, contrary to a prevailing model, we do not detect a role for CCR4-NOT in the degradation of mRNAs with low codon optimality. Together, the results of this work provide new insights into the Pum regulatory network and mechanisms and the parameters that influence the efficacy of Pum-mediated regulation.


Assuntos
Proteínas de Drosophila , Proteínas de Ligação a RNA , Transcriptoma , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Sítios de Ligação , Ligação Proteica , Drosophila/genética , Drosophila/metabolismo
6.
Cancers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339387

RESUMO

Long non-coding RNA activated by DNA damage (NORAD) has recently been associated with pathologic mechanisms underlying cancer progression. Due to NORAD's extended range of interacting partners, there has been contradictory data on its oncogenic or tumor suppressor roles in BC. This review will summarize the function of NORAD in different BC subtypes and how NORAD impacts crucial signaling pathways in this pathology. Through the preferential binding to pumilio (PUM) proteins PUM1 and PUM2, NORAD has been shown to be involved in the control of cell cycle, angiogenesis, mitosis, DNA replication and transcription and protein translation. More recently, NORAD has been associated with PUM-independent roles, accomplished by interacting with other ncRNAs, mRNAs and proteins. The intricate network of NORAD-mediated signaling pathways may provide insights into the potential design of novel unexplored strategies to overcome chemotherapy resistance in BC treatment.

7.
Dev Reprod ; 27(1): 39-46, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38075440

RESUMO

Pumilio (Pum) is an RNA-binding protein and translational repressor important to diverse biological processes. In the Drosophila ovary, Pum is expressed in female germline stem cells (GSCs), wherein it acts as an intrinsic stem cell maintenance factor via repressing target mRNAs that are as yet mostly unknown. Pum recognizes the Pum binding sequence (PBS) in the mRNA 3'UTR through its C-terminus Puf domain. Translational repression is mediated through its N-terminal domain, but the molecular mechanism remains largely unknown. We previously showed that Bag-of-marbles, a critical differentiation-promoting factor of female GSCs, physically interacts with the N-terminus of Pum. We further showed that this interaction is critical to Bam inhibition of Pum repressive action in cultured cells, but the physiological relevance was not addressed. Here we design an in vivo GFP translational reporter bearing the PBS in its 3'UTR and show that GFP expression is reduced in cells wherein Pum is known to be active. Furthermore, we demonstrate in pum mutant ovary that this GFP repression requires Pum, and also that the sensor faithfully monitors Pum activity. Finally, we show that forced expression of Bam inhibits Pum-mediated repression, validating that Bam inhibits Pum activity in vivo.

8.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762337

RESUMO

The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays crucial roles in stress response and growth. However, little is known about Pum in plants. In this study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2, ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4, 7, and 13 exhibited dramatically high expression levels during seed development. The study not only contributes valuable information for further validating the functions of ZmPum genes but also provides insights for improvement and enhancing maize yield.


Assuntos
Endosperma , Zea mays , Zea mays/genética , Sementes/genética
9.
Toxics ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37624174

RESUMO

Clinical trials of new drugs often face a high failure rate of approximately 45 percent due to safety and toxicity concerns. Repurposing drugs with well-established safety profiles becomes crucial in addressing this challenge. Colon cancer ranks as the third most prevalent cancer and the second leading cause of cancer related mortality worldwide. This study focuses on the RNA-binding protein pumilio1 (PUM1), a member of the PUF family involved in post-transcriptional gene expression regulation. By utilizing molecular docking techniques and FDA-approved drugs, potential inhibitors against PUM1 were identified. Notably, dolasetron and ketoprofen demonstrated promising results, exhibiting strong binding affinity, hydrophobic interactions, and favorable chemical reactivity according to Conceptual-DFT calculations. Both compounds effectively reduced cell viability, with IC50 values of 150 µM and 175 µM, respectively and shows long term inhibitory effects as seen by reduced in number of colonies. Moreover, they exhibited inhibitory effects on colon cancer stem cells, as indicated by reduced colonospheroid size and numbers. Apoptosis is induced by these compounds and has triggered activation of executioner caspase 3/7 in HCT116 cells which is evident through a caspase 3/7 assay and AO/EB staining, while the non-toxic effect of these compounds was evident from viability against non-cancerous cell line and hemolysis assay. Additionally, the treatment group showed a significant decrease in PUM1 and cancer stem cell markers expression compared to the control group. In conclusion, this study highlights the potential of targeting PUM1 as a novel approach to colon cancer treatment. Dolasetron and ketoprofen demonstrate promise as effective anti-cancer and anti-cancer stem cell drugs, inducing apoptosis in colon cancer cells through inhibition of PUM1.

10.
Cell Rep ; 42(8): 112980, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37573509

RESUMO

Rodents are taxonomically diverse and have evolved a variety of traits. A mechanistic understanding of such traits has remained elusive, however, largely because genome editing in non-traditional model species remains challenging. Here, using the African striped mouse (Rhabdomys pumilio), we describe TIGER (targeted in vivo genome editing in rodents), a method that relies on a simple intraoviductal injecting technique and uses recombinant adeno-associated viruses (rAAVs) as the sole vehicle to deliver reagents into pregnant females. We demonstrate that TIGER generates knockout and knockin (up to 3 kb) lines with high efficiency. Moreover, we engineer a double-cleaving repair rAAV template and find that it significantly increases knockin frequency and germline transmission rates. Lastly, we show that an oversized double-cleaving rAAV template leads to an insertion of 3.8 kb. Thus, TIGER constitutes an attractive alternative to traditional ex vivo genome-editing methods and has the potential to be extended to a broad range of species.


Assuntos
Edição de Genes , Animais , Feminino , Camundongos , Gravidez , Edição de Genes/métodos , Roedores/genética
11.
J Biomed Sci ; 30(1): 26, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088847

RESUMO

BACKGROUND: Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS: In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS: Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION: Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Camundongos , Animais , Osteogênese/genética , Regulação para Baixo , Diferenciação Celular , Regeneração Óssea/genética , RNA , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
J Gastrointest Oncol ; 14(1): 233-244, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915463

RESUMO

Background: Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Advanced stage CRC, during the recent past, had a dismal prognosis and only a few available treatments. Pumilio homologous protein 1 (PUM1) is reportedly aberrant in human malignancies, including CRC. However, the role of PUM1 in the regulation of tumor-initiating cells (T-ICs) remains unknown. Methods: The levels of messenger RNAs (mRNAs) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunoblot analyses. Statistical analyses were performed to determine the associations between the levels of PUM1 and tumor features and patient outcomes. Whether PUM1 is a downstream target of miR-218-5p was verified by bioinformatics target gene prediction and qRT-PCR. Results: Herein, it was found that T-ICs, chemoresistance, and recurrent CRC samples all manifest increased PUM1 expression. Functional investigations have shown that PUM1 increased the self-renewal, tumorigenicity, malignant proliferation, and chemoresistance of colorectal cells. PUM1 activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway biochemically. Furthermore, it was discovered that miR-218-5p specifically targets T-ICs' PUM1 3'-untranslated region (3'-UTR). More importantly, the PUM1/PI3K/AKT axis regulates CRC cells' responses to treatment with cetuximab, and PUM1 overexpression increased cetuximab resistance. More evidence points to the possibility that low PUM1 may predict cetuximab benefits in CRC patients after analysis of the patient cohort, patient-derived tumor organoids, and patient-derived xenografts (PDXs). Conclusions: Taken together, the result of this work points to the critical function of the miR-218-5p/PUM1/PI3K/AKT regulatory circuit in regulating T-ICs characteristics and thus suggests possible therapeutic targets for CRC.

13.
mBio ; 14(2): e0015723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36856417

RESUMO

Fusarium oxysporum f. sp. niveum (Fon), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of Fon virulence is largely unknown. The present study investigated the biological functions of six FonPUFs, encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of FonPUF1 in Fon virulence. A series of phenotypic analyses indicated that FonPUFs have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of Fon. Notably, the deletion of FonPUF1 attenuates Fon virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for Fon virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of ΔFonPUF1 identified a set of putative FonPUF1-dependent virulence-related genes in Fon, possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for Fon virulence. These findings highlight the functions and molecular mechanism of FonPUFs in Fon virulence. IMPORTANCE Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. nievum (Fon) causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by Fon remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes (FonPUFs) differentially operate diverse basic biological processes, including stress response, and that FonPUF1 is required for Fon virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in Fon by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating Fon virulence, providing a possibility for the development of novel strategies for disease management.


Assuntos
Citrullus , Fusarium , Citrullus/genética , Citrullus/microbiologia , Fusarium/genética , Regiões 3' não Traduzidas , Virulência , Complexo 2-3 de Proteínas Relacionadas à Actina , Proteína 2 Relacionada a Actina/genética , Doenças das Plantas/microbiologia
14.
Am Nat ; 201(2): 215-228, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724462

RESUMO

AbstractPhenotypic differentiation within polytypic species is often attributed to selection, particularly when selection might be acting on a trait that serves as a signal for predator avoidance and mate choice. We evaluated this hypothesis by examining phenotypic and genotypic clines between populations of the strawberry poison frog Oophaga pumilio, a polytypic species that exhibits aposematic color pattern variation that is thought to be subject to both natural and sexual selection. Our aim was to assess the extent of admixture and to estimate the strength of selection acting on coloration across a region of Panama where monomorphic populations of distinctly colored frogs are separated by polymorphic populations containing both color variants alongside intermediately colored individuals. We detected sharp clinal transitions across the study region, which is an expected outcome of strong selection, but we also detected evidence of widespread admixture, even at sites far from the phenotypic transition zone. Additionally, genotypic and phenotypic clines were neither concordant nor coincident, and with one exception, selection coefficients estimated from cline attributes were small. These results suggest that strong selection is not required for the maintenance of phenotypic divergence within polytypic species, challenging the long-standing notion that strong selection is implicit in the evolution of warning signals.


Assuntos
Anuros , Seleção Sexual , Humanos , Animais , Anuros/genética , Fenótipo , Genótipo , Panamá , Seleção Genética
15.
Biol Pharm Bull ; 46(2): 163-169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724944

RESUMO

Phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) is a highly conserved enzyme that generates phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) by phosphorylating phosphatidylinositol 4-phosphate (PI(4)P). Schizosaccharomyces pombe (S. pombe) its3-1 is a loss-of-function mutation in the essential its3+ gene that encodes a PI4P5K. Its3 regulates cell proliferation, cytokinesis, cell integrity, and membrane trafficking, but little is known about the regulatory mechanisms of Its3. To identify regulators of Its3, we performed a genetic screening utilizing the high-temperature sensitivity (TS) of its3-1 and identified puf3+ and puf4+, encoding Pumilio/PUF family RNA-binding proteins as multicopy suppressors of its3-1 cells. The deletions of the PUF domains in the puf3+ and puf4+ genes resulted in the reduced ability to suppress its3-1, suggesting that the suppression by Puf3 and Puf4 may involve their RNA-binding activities. The gene knockout of Puf4, but not that of Puf3, exacerbated the TS of its3-1. Interestingly, mutant Its3 expression levels both at mRNA and protein levels were lower than those of the wild-type (WT) Its3. Consistently, the overexpression of the mutant its3-1 gene suppressed the its3-1 phenotypes. Notably, Puf3 and Puf4 overexpression increased the mRNA and protein expression levels of both Its3 and Its3-1. Collectively, our genetic screening revealed a functional relationship between the Pumilio/PUF family RNA-binding proteins and PI4P5K.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Eur J Haematol ; 110(5): 498-509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36536516

RESUMO

OBJECTIVE: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy, and T-ALL patients are prone to early disease relapse and suffer from poor outcomes. The crucial function of RNA-binding proteins (RBPs) has been reported in the progression of cancers by regulating the expression of transcripts. This study aimed to reveal the role and molecular regulatory mechanism of RBP Pumilio2 (PUM2) in T-ALL. METHODS: The expression of genes was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The viability, proliferation, and apoptosis of T-ALL cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and flow cytometry analysis. Luciferase reporter, RNA pulldown, and RNA immunoprecipitation assays were performed to confirm the binding of PUM2 to RBM5. The combination between RNA-binding motif protein 5 (RBM5) and microRNA (miR)-28-5p was validated using luciferase reporter assay. RESULTS: Our data revealed that PUM2 was highly expressed in T-ALL blood samples and cell lines. PUM2 knockdown suppressed the proliferation but accelerated the apoptosis of T-ALL cells in vitro. Additionally, RBM5 exhibited a low expression level in T-ALL samples and cells. PUM2 negatively regulated RBM5 via targeting its 3'untranslated region (3'UTR). Moreover, PUM2 competitively bound to RBM5 3'UTR with miR-28-5p. Rescue experiments showed that RBM5 knockdown reversed the anti-tumor effects mediated by PUM2 knockdown in T-ALL cells. CONCLUSION: PUM2 plays as a novel oncogenic RBP in T-ALL by competitively binding to RBM5 mRNA with miR-28-5p.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , MicroRNAs/genética , Regiões 3' não Traduzidas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Proliferação de Células , Apoptose/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Noncoding RNA ; 8(6)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36412911

RESUMO

Introduction: Long non-coding RNAs (LncRNA) represent a heterogeneous family of RNAs that have emerged as regulators of various biological processes through their association with proteins in ribonucleoproteins complexes. The dynamic of these interactions can affect cell metabolism, including cancer development. Annually, breast cancer causes thousands of deaths worldwide, and searching for new biomarkers is pivotal for better diagnosis and treatment. Methods: Based on in silico prediction analysis, we focus on LncRNAs that have binding sites for PUMILIO, an RBP family involved in post-transcriptional regulation and associated with cancer progression. We compared the expression levels of these LncRNAs in breast cancer and non-tumor samples from the TCGA database. We analyzed the impact of overall and disease-free survival associated with the expression of the LncRNAs and co-expressed genes and targets of PUMILIO proteins. Results: Our results found NORAD as the most relevant LncRNA with a PUMILIO binding site in breast cancer, differently expressed between Luminal A and Basal subtypes. Additionally, NORAD was co-expressed in a Basal-like subtype (0.55) with the RALGAPB gene, a target gene of PUMILIO related to chromosome stability during cell division. Conclusion: These data suggest that this molecular axis may provide insights for developing novel therapeutic strategies for breast cancer.

18.
Emerg Infect Dis ; 28(11): 2298-2301, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36286076

RESUMO

A survey of intestinal helminths targeting 1,440 schoolchildren in 12 primary schools on Kome Island (Lake Victoria), Tanzania, revealed small trematode eggs in 19 children (1.3%), seemingly of a species of Haplorchis or Heterophyes. The eggs were molecularly confirmed to be Haplorchis pumilio on the basis of 18S and 28S rDNA sequences.


Assuntos
Heterophyidae , Infecções por Trematódeos , Criança , Animais , Humanos , Lagos , Tanzânia/epidemiologia , Infecções por Trematódeos/parasitologia , DNA Ribossômico
19.
Med Oncol ; 39(12): 251, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224472

RESUMO

Over the last few decades, the number of people diagnosed with cancer has increased dramatically every year, making it a major cause of mortality today. Colon cancer is the third most common cancer worldwide, and the second in mortality rate. Current cancer treatment fails to treat colon cancer completely due to the remains of Cancer Stem Cells (CSCs). Morin flavonoid present in figs (Ficus carica) and other plant sources, was found to have an anti-proliferative effect on the colon cancer model and cell line, but it is not studied for its effect on the colon CSCs. In this study, we have tested the potency of morin to inhibit CSCs. We found that morin has significantly reduced colon cancer cell proliferation, colony formation, migration, and colonospheroid formation in a dose-dependent manner. Pumilio-1 (PUM1) has been shown to play an important role in colon CSCs maintenance. We found that morin has a good binding affinity with PUM1 protein with one hydrophobic and two hydrogen bond interactions. Further, the immunofluorescence results have also shown a reduction in PUM1 expression in colon cancer cell lines after morin treatment. CD133 is overexpressed in colon CSCs and morin treatment has reduced the CD133 expression in HCT116 and CT26 colon cancer cell lines. Our research outcome has explored the anti-cancer stem cell potency of morin via targeting the PUM1 protein and further reducing the colon spheroids formation and reducing the CD133 expression in colon cancer cells.


Assuntos
Neoplasias do Colo , Células-Tronco Neoplásicas , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Flavonas , Flavonoides/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073607

RESUMO

Manipulating firing-rate neuronal homeostasis, which enables neurons to regulate their intrinsic excitability, offers an attractive opportunity to prevent seizures. However, to date, no drug-based interventions have been reported that manipulate this type of neuronal homeostatic mechanism. Here, we used a combination of Drosophila and mouse, and, in the latter, both a pentylenetetrazole (PTZ)-induced seizure model and an electrically induced seizure model for refractory seizures to evaluate the anticonvulsant efficacy of a novel class of anticonvulsant compounds, based on 4-tert-butyl-benzaldehyde (4-TBB). The mode of action included increased expression of the firing rate homeostatic regulator Pumilio (PUM). Knockdown of pum expression, in Drosophila, blocked anticonvulsive effects of 4-TBB, while analysis of validated PUM targets in mouse brain revealed significant reductions following exposure to this compound. A structure-activity study identified the active parts of the molecule and, further, showed that the pyrazole analogue demonstrates highest efficacy, being active against both PTZ-induced and electrically induced seizures. This study provides a proof of principle that anticonvulsant effects can be achieved through regulation of firing rate neuronal homeostasis and identifies a possible chemical compound for future development.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Benzaldeídos/efeitos adversos , Drosophila , Homeostase , Camundongos , Neurônios , Pentilenotetrazol/efeitos adversos , Pirazóis/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA