Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
J Clin Med ; 13(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39407774

RESUMO

Introduction: Polyomavirus-associated nephropathy (BKPyVAN) is a common complication in kidney transplant recipients. The histological changes in the context of BKPyVAN and their association with the viral load and outcomes are still being investigated. Methods: This retrospective study involved 100 adult patients transplanted between 2000 and 2021, with available archived biopsy slides, aiming to analyze associations between viral load clearance in the blood (reduction in BKPyVAN-DNAemia below detection level) and histological features in biopsy-proven BKPyVAN. A kidney pathologist blinded to the clinical data reassessed the BANFF 2019 lesion scores in the BKPyVAN index biopsy. The primary endpoint was viral clearance three months after the diagnosis. Results: The presence of tubulointerstitial inflammation, peritubular capillaritis, and higher PVN Class at the diagnosis was linked to a reduced likelihood of viral clearance three months later (interstitial inflammation OR = 0.2, 95% CI [0.07-0.55], tubulitis OR = 0.39, 95% CI [0.21-0.73], peritubular capillaritis OR = 0.25, 95% CI [0.08-0.82], PVN Score OR = 0.1, 95% CI [0.03-0.4]), independently of other covariates. Combining the four lesions using the ROC analysis enhanced their capability to predict persistent BK viremia after 3 months with an AUC of 0.94. Conclusions: The presence of interstitial inflammation, tubulitis, and peritubular capillaritis, as well as the higher PVN Score, was associated with an up to 90% lower likelihood of viral load clearance three months post-diagnosis. These findings underscore the importance of histological evaluation as a surrogate of subsequent viral clearance and offer valuable insights for the management of BKPyVAN.

2.
Biol Sex Differ ; 15(1): 78, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407302

RESUMO

BACKGROUND: Adolescent social isolation (ASI) has profound long-term effects on behavioral and neural development. Despite this, the specific long-term impact of ASI during different adolescent stages and across sexes remain underexplored. METHODS: Our study addresses this gap by examining the effects of early- and late- adolescent social isolation on both male and female rats. Rats were either isolated (or group-housed) starting from PD 21 (early) or PD 42 (late) for three weeks and then rehoused into groups. In adulthood (PD 90), rats underwent a battery of tests: elevated plus-maze, open field, novel object recognition, social interaction and social recognition memory and hotplate tests. Finally, we analyzed oxytocin receptor binding in several regions in the brains of a second cohort of rats. RESULTS: Both, male and female rats from the late adolescent social isolation (LASI) groups spent significantly less time interacting in the social interaction test. Additionally, we observed a general decrease in social recognition memory regardless of sex. Both male ASI groups demonstrated heightened thermal pain sensitivity, while the opposite was observed in early adolescent social isolation (EASI) female rats. In the brain, we observed changes in oxytocin receptor (OTR) binding in the paraventricular nucleus of the hypothalamus (PVN) and paraventricular nucleus of the thalamus (PVT) and central amygdala (CeA) with the largest changes in EASI and LASI female rats. CONCLUSION: Our model demonstrates long-lasting alterations on behavior and oxytocin receptor binding levels following ASI providing insights into the long-term effects of ASI in a time- and sex-specific manner.


Assuntos
Ocitocina , Receptores de Ocitocina , Caracteres Sexuais , Comportamento Social , Isolamento Social , Animais , Masculino , Feminino , Isolamento Social/psicologia , Receptores de Ocitocina/metabolismo , Ocitocina/metabolismo , Limiar da Dor , Encéfalo/metabolismo , Ratos , Comportamento Animal , Ratos Sprague-Dawley
3.
Elife ; 132024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412843

RESUMO

Many species of animals exhibit caregiving or aggression toward conspecific offspring. The neural mechanisms underlying the infanticide and pup care remain poorly understood. Here, using monogamous mandarin voles (Microtus mandarinus), we found that more oxytocin (OT) neurons in the paraventricular nucleus (PVN) were activated during pup caring than infanticide. Optogenetic activation of OT neurons in the PVN facilitated pup caring in male and female mandarin voles. In infanticide voles, optogenetic activation of PVN OT cells or PVN-medial prefrontal cortex (mPFC) OT projection fibers prolonged latency to approach and attack pups, whereas inhibition of these OT neurons or projections facilitated approach and infanticide. Optogenetic activation of PVN OT neuron projections to the mPFC in males shortened the latency to approach and retrieve pups and facilitated the initiation of pup care, but produced no effects on pup-care females. In addition, OT release in the mPFC increased upon approaching and retrieving pups, and decreased upon attacking pups. Intraperitoneal injection of OT promoted pup care and inhibited infanticide behavior. It is suggested that the OT system, especially PVN OT neurons projecting to mPFC, modulates pup-directed behaviors and OT can be used to treat abnormal behavioral responses associated with some psychological diseases such as depression and psychosis.


Assuntos
Arvicolinae , Ocitocina , Núcleo Hipotalâmico Paraventricular , Córtex Pré-Frontal , Animais , Arvicolinae/fisiologia , Ocitocina/metabolismo , Feminino , Masculino , Córtex Pré-Frontal/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Optogenética , Agressão/fisiologia , Comportamento Animal , Comportamento Paterno/fisiologia
4.
Elife ; 132024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412858

RESUMO

Oxytocin neuron projections from two brain regions involved in parental care regulate both parental care and infanticidal behaviors in virgin mandarin voles.


Assuntos
Arvicolinae , Ocitocina , Animais , Arvicolinae/fisiologia , Ocitocina/metabolismo , Neurônios/fisiologia , Encéfalo/fisiologia , Comportamento Animal/fisiologia , Feminino
5.
Heliyon ; 10(19): e38554, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39398073

RESUMO

As natural polysaccharide cannot directly pass the blood-brain barrier, it is of potential importance to investigate the systemic anti-depression mechanisms of polysaccharides (PSP) from Polygonatum cyrtonema Hua, a well-known herbal medicine with the anti-depressant activity. Here, we explored the underlying mechanisms of effects of PSP on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice from the perspective of the microbiota-gut-brain axis. The results demonstrated that PSP intervention for 14 days significantly improved CUMS-induced depressive-like behaviors. Interestingly, PSP treatment increased the relative abundance of Muribaculaceae, Dubosiella and Lactobacillus and decreased the relative abundance of Akkermansia, Helicobacter and Clostridium_methylpentosum in the colon of CUMS mice. Meanwhile, PSP blocked CUMS-induced impairment of intestinal barrier function, inhibited the levels of corticosterone and lipopolysaccharide (LPS), and increased the level of 5-hydroxytryptamine in the serum. Importantly, PSP treatment prevented abnormal neuronal activation and altered local field potential (LFP) in the paraventricular nucleus of CUMS mice, especially the decrease of power spectral density in delta and theta frequency bands. Finally, the results of LFP and c-fos staining after multiple repetitions of LPS injection showed consistencies with CUMS. Taken together, our study indicates that PSP ameliorates depression-like behavior likely via modulating the gut microbiota-lipopolysaccharide-paraventricular nucleus signal axis.

6.
Eur J Neurosci ; 60(8): 5849-5860, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39235324

RESUMO

The paraventricular nucleus of the hypothalamus (PVN) regulates physiological and behavioural responses evoked by stressful stimuli, but the local neurochemical and signalling mechanisms involved are not completely understood. The soluble guanylate cyclase (sGC) within the PVN is implicated in autonomic and cardiovascular control in rodents under resting conditions. However, the involvement of PVN sGC-mediated signalling in stress responses is unknown. Therefore, we investigated the role of sGC within the PVN in cardiovascular, autonomic, neuroendocrine, and local neuronal responses to acute restraint stress in rats. Bilateral microinjection of the selective sGC inhibitor ODQ (1 nmol/100 nl) into the PVN reduced both the increased arterial pressure and the drop in cutaneous tail temperature evoked by restraint stress, while the tachycardia was enhanced. Intra-PVN injection of ODQ did not alter the number of Fos-immunoreactive neurons in either the dorsal cap parvocellular (PaDC), ventromedial (PaV), medial parvocellular (PaMP), or lateral magnocelllular (PaLM) portions of the PVN following acute restraint stress. Local microinjection of ODQ into the PVN did not affect the restraint-induced increases in plasma corticosterone concentration. Taken together, these findings suggest that sGC-mediated signalling in the PVN plays a key role in acute stress-induced pressor responses and sympathetically mediated cutaneous vasoconstriction, whereas the tachycardiac response is inhibited. Absence of an effect of ODQ on corticosterone and PVN neuronal activation in and the PaV and PaMP suggests that PVN sGC is not involved in restraint-evoked hypothalamus-pituitary-adrenal (HPA) axis activation and further indicates that autonomic and neuroendocrine responses are dissociable at the level of the PVN.


Assuntos
Núcleo Hipotalâmico Paraventricular , Restrição Física , Estresse Psicológico , Animais , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Masculino , Ratos , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Ratos Wistar , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Guanilato Ciclase/metabolismo , Guanilato Ciclase/antagonistas & inibidores
7.
Neuropharmacology ; 260: 110129, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179173

RESUMO

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Camundongos Endogâmicos C57BL , MicroRNAs , Núcleo Hipotalâmico Paraventricular , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Depressão/metabolismo , Depressão/genética , Sistema Hipotálamo-Hipofisário/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Derrota Social , Estresse Psicológico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Mol Brain ; 17(1): 49, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090731

RESUMO

Neurexin-3 (Nrxn3) has been genetically associated with obesity, but the underlying neural mechanisms remain poorly understood. This study aimed to investigate the role of Nrxn3 in the paraventricular nucleus of the hypothalamus (PVN) in regulating energy balance and glucose homeostasis. We found that Nrxn3 expression in the PVN was upregulated in response to metabolic stressors, including cold exposure and fasting. Using Cre-loxP technology, we selectively ablated Nrxn3 in CaMKIIα-expressing neurons of the PVN in male mice. This genetic manipulation resulted in marked weight gain attributable to increased adiposity and impaired glucose tolerance, without affecting food intake. Our findings identify PVN CaMKIIα-expressing neurons as a critical locus where Nrxn3 modulates energy balance by regulating adipogenesis and glucose metabolism, independently of appetite. These results reveal a novel neural mechanism potentially linking Nrxn3 dysfunction to obesity pathogenesis, suggesting that targeting PVN Nrxn3-dependent neural pathways may inform new therapeutic approaches for obesity prevention and treatment.


Assuntos
Peso Corporal , Ingestão de Alimentos , Glucose , Homeostase , Proteínas do Tecido Nervoso , Núcleo Hipotalâmico Paraventricular , Animais , Masculino , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
9.
Neurochem Res ; 49(10): 2926-2939, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39078522

RESUMO

Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist with sedative effects on sleep homeostasis. Oxytocin-expressing (OXT) neurons in the paraventricular nucleus (PVN) of the hypothalamus (PVNOXT) regulate sexual reproduction, drinking, sleep-wakefulness, and other instinctive behaviors. To investigate the effect of DEX on the activity and signal transmission of PVNOXT in regulating the sleep-wakefulness cycle. Here, we employed OXT-cre mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in PVNOXT neurons. Combining chemogenetic methods with electroencephalogram (EEG) /electromyogram (EMG) recordings, we found that cannula injection of DEX in PVN significantly increased the duration of non-rapid eye movement (NREM) sleep in mice. Furthermore, the chemogenetic activation of PVNOXT neurons using i.p. injection of clozapine N-oxide (CNO) after cannula injection of DEX to PVN led to a substantial increase in wakefulness. Electrophysiological results showed that DEX decreased the frequency of action potential (AP) and the spontaneous excitatory postsynaptic current (sEPSC) of PVNOXT neurons through α2-adrenoceptors. Therefore, these results identify that DEX promotes sleep and maintains sleep homeostasis by inhibiting PVNOXT neurons through the α2-adrenoceptor.


Assuntos
Dexmedetomidina , Neurônios , Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Dexmedetomidina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Masculino , Vigília/efeitos dos fármacos , Vigília/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Hipnóticos e Sedativos/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia
10.
Cell Rep ; 43(7): 114380, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935503

RESUMO

Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Ritmo Circadiano , Camundongos Knockout , Neurônios , Núcleo Hipotalâmico Paraventricular , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Relógios Circadianos/genética , Camundongos , Neurônios/metabolismo , Ritmo Circadiano/fisiologia , Ocitocina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Astrócitos/metabolismo , Oligodendroglia/metabolismo
11.
Neurobiol Stress ; 30: 100631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601362

RESUMO

To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.

12.
Hepatobiliary Surg Nutr ; 13(2): 258-272, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617474

RESUMO

Background: Visceral pain induced by pancreatic cancer seriously affects patients' quality of life, and there is no effective treatment, because the mechanism of its neural circuit is unknown. Therefore, the aim of this study is to explore the main neural circuit mechanism regulating visceral pain induced by pancreatic cancer in mice. Methods: The mouse model of pancreatic cancer visceral pain was established on C57BL/6N mice by pancreatic injection of mPAKPC-luc cells. Abdominal mechanical hyperalgesia and hunch score were performed to assess visceral pain; the pseudorabies virus (PRV) was used to identify the brain regions innervating the pancreas; the c-fos co-labeling method was used to ascertain the types of activated neurons; in vitro electrophysiological patch-clamp technique was used to record the electrophysiological activity of specific neurons; the calcium imaging technique was used to determine the calcium activity of specific neurons; specific neuron destruction and chemogenetics methods were used to explore whether specific neurons were involved in visceral pain induced by pancreatic cancer. Results: The PRV injected into the pancreas was detected in the paraventricular nucleus of the hypothalamus (PVN). Immunofluorescence staining showed that the majority of c-fos were co-labeled with glutamatergic neurons in the PVN. In vitro electrophysiological results showed that the firing frequency of glutamatergic neurons in the PVN was increased. The calcium imaging results showed that the calcium activity of glutamatergic neurons in the PVN was enhanced. Both specific destruction of glutamatergic neurons and chemogenetics inhibition of glutamatergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer. Conclusions: Glutamatergic neurons in the PVN participate in the regulation of visceral pain induced by pancreatic cancer in mice, providing new insights for the discovery of effective targets for the treatment of pancreatic cancer visceral pain.

13.
J Gastrointest Oncol ; 15(1): 468-477, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482229

RESUMO

Background: Given the pivotal role of neuroinflammation in chronic pain and that the paraventricular nucleus of the hypothalamus (PVN) is a crucial brain region involved in visceral pain regulation, we sought to investigate whether the targeted modulation of microglia and astrocytes in the PVN could ameliorate pancreatic cancer-induced visceral pain (PCVP) in mice. Methods: Using a mouse model of PCVP, achieved by tumor cell injection at the head of the pancreas, we measure the number of glial cells, and at the same time we employed minocycline to inhibit microglia and chemogenetic methods to suppress astrocytes in order to investigate the respective roles of microglia and astrocytes within the PVN in PCVP. Results: Mice exhibited visceral pain at 12, 15 and 18 days post-tumor cell injection. We observed a significant increase in the population of both microglia and astrocytes. Inhibition of microglial activity through minocycline microinjection into the PVN resulted in alleviation of visceral pain within 30 and 60 min. Similarly, chemogenetic inhibition of astrocyte function at 14 and 21 days post-injection also led to relief from visceral pain. Conclusions: This study found that PVN microglia and astrocytes were involved in regulating PCVP. Our results suggest that targeting glia may be a potential approach for alleviating visceral pain in patients with pancreatic cancer.

14.
J Gastrointest Oncol ; 15(1): 458-467, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482250

RESUMO

Background: For patients with pancreatic cancer, visceral pain is a debilitating symptom that significantly compromises their quality of life. Unfortunately, the lack of effective treatment options can be attributed to our limited understanding of the neural circuitry underlying this phenomenon. The primary objective of this study is to elucidate the fundamental mechanisms governing visceral pain induced by pancreatic cancer in murine models. Methods: A mouse model of pancreatic cancer visceral pain was established in C57BL/6N mice through the intrapancreatic injection of mPAKPC-luc cells. Abdominal mechanical hyperalgesia and hunch score were employed to evaluate visceral pain, whereas the in vitro electrophysiological patch-clamp technique was utilized to record the electrophysiological activity of GABAergic neurons. Specific neuron ablation and chemogenetics methods were employed to investigate the involvement of GABAergic neurons in pancreatic cancer-induced visceral pain. Results: In vitro electrophysiological results showed that the firing frequency of GABAergic neurons in the paraventricular nucleus of the hypothalamus (PVN) was decreased. Specific destruction of GABAergic neurons in the PVN exacerbated visceral pain induced by pancreatic cancer. Chemogenetics activation of GABAergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer. Conclusions: GABAergic neurons located in PVN play a crucial role in precipitating visceral pain induced by pancreatic cancer in mice, thereby offering novel insights for identifying effective targets to treat pancreatic cancer-related visceral pain.

15.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38215742

RESUMO

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Assuntos
Hormônio Liberador da Corticotropina , Hormônios Liberadores de Hormônios Hipofisários , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios Dopaminérgicos/metabolismo
16.
Biol Reprod ; 110(2): 339-354, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37971364

RESUMO

Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.


Assuntos
Placenta , Aumento de Peso , Humanos , Gravidez , Camundongos , Feminino , Masculino , Animais , Placenta/metabolismo , Feto/metabolismo , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos
17.
Front Pharmacol ; 14: 1256924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920211

RESUMO

The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in maintaining homeostasis and modulates cardiovascular function via autonomic pre-sympathetic neurones. We have previously shown that coupling between transient receptor potential cation channel subfamily V Member 4 (Trpv4) and small-conductance calcium-activated potassium channels (SK) in the PVN facilitate osmosensing, but since TRP channels are also thermosensitive, in this report we investigated the temperature sensitivity of these neurones. Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with cell-attached patch-clamp electrophysiology. Following recovery of temperature-sensitive single-channel kinetic schema, we constructed a predictive stochastic mathematical model of these neurones and validated this with electrophysiological recordings of action current frequency. Results: 7 thermosensitive TRP channel genes were found in PVN punches. Trpv4 was the most abundant of these and was identified at the single channel level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like channels; open probability (Po) markedly decreased when temperature was decreased, mediated by a decrease in mean open dwell times. Our neuronal model predicted that PVN spontaneous action current frequency (ACf) would increase as temperature is decreased and in our electrophysiological experiments, we found that ACf from PVN neurones was significantly higher at lower temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the presence of gadolinium (100 µM), the temperature effect was largely retained. Using econazole (10 µM), a blocker of Trpm2, we found there were significant increases in overall ACf and the temperature effect was inhibited. Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene in the PVN appears to contribute to intrinsic thermosensitive properties of PVN neurones. At physiological temperatures (37°C), we observed relatively low ACf primarily due to the activity of Trpm2 channels, whereas at room temperature, where most of the previous characterisation of PVN neuronal activity has been performed, ACf is much higher, and appears to be predominately due to reduced Trpv4 activity. This work gives insight into the fundamental mechanisms by which the body decodes temperature signals and maintains homeostasis.

18.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37823477

RESUMO

The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.


Assuntos
Hormônio Liberador da Corticotropina , Grelina , Camundongos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Grelina/farmacologia , Grelina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo
19.
EMBO Rep ; 24(12): e57176, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870400

RESUMO

Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. ß-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.


Assuntos
Resistência à Insulina , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Depressão , Obesidade/metabolismo , Adipocinas/metabolismo , Adipocinas/farmacologia
20.
Cell Rep ; 42(10): 113305, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864798

RESUMO

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Assuntos
Ocitocina , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Analgésicos Opioides/farmacologia , Neurônios/metabolismo , Saciação , Colecistocinina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA