Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373650

RESUMO

INTRODUCTION: Valerenic acid (VA) is a unique and biologically active component in Valeriana officinalis L., which has been reported to have a regulatory effect on the cardiovascular system. However, its therapeutic effects on pathological myocardial hypertrophy (PMH) and the underlying mechanisms are undefined. OBJECTIVES: Our study aims to elucidate how VA improves PMH, and preliminarily discuss its mechanism. METHODS: The efficacy of VA on PMH was confirmed by in vivo and in vitro experiments and the underlying mechanism was investigated by molecular dynamics (MD) simulations and specific siRNA interference. RESULTS: VA enhanced cardiomyocyte fatty acid oxidation (FAO), inhibited hyper-activated glycolysis, and improved the unbalanced pyruvate-lactate axis. VA could significantly improve impaired mitochondrial function and reduce the triglyceride (TG) in the hypertrophic myocardium while reducing the lactate (LD) content. Molecular mechanistic studies showed that VA up-regulated the expression of peroxisome proliferator-activated receptor-α (PPARα) and downstream FAO-related genes including CD36, CPT1A, EHHADH, and MCAD. VA reduced the expression of ENO1 and PDK4, the key enzymes in glycolysis. Meanwhile, VA improved the pyruvate-lactate axis and promoted the aerobic oxidation of pyruvate by inhibiting LDAH and MCT4. MD simulations confirmed that VA can bind with the F273 site of PPARα, which proposes VA as a potential activator of the PPARα. CONCLUSION: Our results demonstrated that VA might be a potent activator for the PPARα-mediated pathway. VA directly targets the PPARα and subsequently promotes energy metabolism to attenuate PMH, which can be applied as a potentially effective drug for the treatment of HF.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166944, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952827

RESUMO

Sema4D (CD100) is closely related to pathological and physiological processes, including tumor growth, angiogenesis and cardiac development. Nevertheless, the role and mechanism of Sema4D in cardiac hypertrophy are still unclear to date. To assess the impact of Sema4D on pathological cardiac hypertrophy, TAC surgery was performed on C57BL/6 mice which were transfected with AAV9-mSema4D-shRNA or AAV9-mSema4D adeno-associated virus by tail vein injection. Our results indicated that Sema4D knockdown mitigated cardiac hypertrophy, fibrosis and dysfunction when exposed to pressure overload, and Sema4D downregulation markedly inhibited cardiomyocyte hypertrophy induced by angiotensin II. Meanwhile, Sema4D overexpression had the opposite effect in vitro and in vivo. Furthermore, analysis of signaling pathways showed that Sema4D activated the MAPK pathway during cardiac hypertrophy induced by pressure overload, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed Sema4D overexpression-induced deteriorated phenotype, resulting in improved cardiac function. Further research indicated that myocardial hypertrophy induced by Sema4D was closely related to the expression of the pyroptosis-related proteins PP65, NLRP3, caspase-1, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, our study demonstrated that Sema4D regulated the process of pathological myocardial hypertrophy through modulating MAPK/NF-κB/NLRP3 pathway, and Sema4D may be the promising interventional target of cardiac hypertrophy and heart failure.


Assuntos
Antígenos CD , Miócitos Cardíacos , NF-kappa B , Semaforinas , Animais , Camundongos , Cardiomegalia/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Acta Biomater ; 164: 604-625, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080445

RESUMO

Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.


Assuntos
Insuficiência Cardíaca , Sirtuína 3 , Humanos , Masculino , Animais , Suínos , Microbolhas , Estudos Prospectivos , Cardiomegalia , Modelos Animais , Fibrose , Lipídeos
4.
Front Pharmacol ; 13: 1004181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249793

RESUMO

Pathological myocardial hypertrophy can be caused by a variety of diseases, mainly accompanied by myocardial interstitial fibrosis (MIF), which is a diffuse and patchy process, appearing as a combination of interstitial micro-scars and perivascular collagen fiber deposition. Different stimuli may trigger MIF without cell death by activating a variety of fibrotic signaling pathways in mesenchymal cells. This manuscript summarizes the current knowledge about the mechanism and harmful outcomes of MIF in pathological myocardial hypertrophy, discusses the circulating and imaging biomarkers that can be used to identify this lesion, and reviews the currently available and potential future treatments that allow the individualized management of patients with pathological myocardial hypertrophy.

5.
Exp Cell Res ; 405(2): 112730, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242624

RESUMO

CBL (Casitas B cell lymphoma), an important ubiquitin protein ligase, is involved in protein folding, protein maturation, and proteasome-dependent protein catabolism in different cells. However, its role in cardiac hypertrophy is still unclear. In this study, we found that expression of CBL is increased in an Ang II-induced mouse cardiac hypertrophy animal model and in Ang II-treated H9C2 cells. Interference with CBL expression attenuates the degree of myocardial hypertrophy as well as the expression of hypertrophy-related genes in H9C2 cells. Further research found that CBL aggravates myocardial hypertrophy by activating HIF-1α, which is an aggravating factor for hypertrophy. The effect of CBL on promoting myocardial hypertrophy was reversed by interference with HIF-1α. Mechanistically, we found that CBL directly interacted with and degraded VHL by increasing its ubiquitination level, which is a widely accepted regulatory factor of HIF-1α. Finally, our results showed that CBL was partially dependent on degradation of VHL and that activation of HIF-1α promoted myocardial hypertrophy. Collectively, these findings suggest that strategies based on activation of the CBL/HIF-1α axis might be promising for the treatment of hypertrophic cardiomyopathy.


Assuntos
Cardiomegalia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfoma de Células B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética
6.
Exp Cell Res ; 396(1): 112245, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882218

RESUMO

The constitutive photomorphogenic 9 (COP9) signalosome complex subunit 6 (COPS6/CSN6) is crucial for structural integrity of the COP9 signalosome complex. CSN6 participates in various aspects of cancer progression, but its role in hypertrophic cardiomyopathy is not clear. Here, we found that the expression of CSN6 was increased in Angiotensin II (Ang II)-induced hypertrophic mice hearts and neonatal rat cardiomyocytes (NRCMs). Inhibition of CSN6 decreased the cardiomyocyte size and fetal genes' expression in Ang II-induced hypertrophic NRCMs, while overexpression of CSN6 aggravated Ang II-induced myocardial hypertrophy. Moreover, we demonstrated that the pro-hypertrophic function of CSN6 was mediated by SIRT2, which acts as a cardioprotective factor in pathological cardiac hypertrophy. CSN6 inhibited the expression of SIRT2, and re-expression of SIRT2 attenuated the myocardial hypertrophy caused by CSN6 overexpression. Further investigation discovered that CSN6 suppressed the expression of SIRT2 via up-regulating Nkx2.2, a transcription suppressor of SIRT2. Mechanistically, CSN6 blocked the ubiquitin proteasome system-mediated degradation of Nkx2.2 protein by interacting with it and inhibiting its ubiquitination directly in cardiomyocytes. Finally, our data showed that CSN6 was partially dependent on the stabilization of Nkx2.2 protein to inhibit SIRT2 and promote myocardial hypertrophy. Overall, our study identified CSN6 as a pro-hypertrophic deubiquitinase, and CSN6 inhibition may be a potential treatment strategy for heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Complexo do Signalossomo COP9/genética , Cardiomegalia/genética , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/metabolismo , Sirtuína 2/genética , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/administração & dosagem , Animais , Animais Recém-Nascidos , Complexo do Signalossomo COP9/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Tamanho Celular , Regulação da Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 2/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA