Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 650(Pt B): 1518-1524, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487282

RESUMO

Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049368

RESUMO

The oxygen reduction reaction (ORR) is one of the key catalytic reactions for hydrogen fuel cells, biofuel cells and metal-air cells. However, due to the complex four-electron catalytic process, the kinetics of the oxygen reduction reaction are sluggish. Platinum group metal (PGM) catalysts represented by platinum and palladium are considered to be the most active ORR catalysts. However, the price and reserves of Pt/Pd are major concerns and issues for their commercial application. Improving the catalytic performance of PGM catalysts can effectively reduce their loading and material cost in a catalytic system, and they will be more economical and practical. In this review, we introduce the kinetics and mechanisms of Pt/Pd-based catalysts for the ORR, summarize the main factors affecting the catalytic performance of PGMs, and discuss the recent progress of Pt/Pd-based catalysts. In addition, the remaining challenges and future prospects in the design and improvement of Pt/Pd-based catalysts of the ORR are also discussed.

3.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37023728

RESUMO

Controlling the morphology and composition of Pd-based catalysts is the key to construct highly efficient electrocatalysts for cathodic oxygen reduction reaction (ORR). Here, rare Earth element Y-doped Pd nanosponge (PdY NSs) are prepared by one-step reduction approach using NaBH4as reductant, which are employed for ORR under 0.1 M KOH. The PdY NSs with plentiful voids can offer a large number of active sites and improve the mass transfer for ORR. Moreover, the introduction of Y alters the electronic structure of Pd, thus promoting the dissociation and adsorption of oxygen. Therefore, the prepared PdY NSs display superior ORR activity and durability to the Pd NSs and Pd black, highlighting the introduction of rare Earth element on the enhancement of ORR performance for Pd-based catalysts.

4.
Environ Sci Pollut Res Int ; 30(13): 37462-37474, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574122

RESUMO

In this work, the influence of oxyanions on the catalytic reduction of nitrates using formic acid as the reducing agent was studied as well as the influence of bicarbonate, sulfate, and phosphate co-anions on the catalytic nitrate reduction with Pd:In/Al2O3 (1:0.25 wt.%). A negative effect on nitrate conversion was observed in the following order: phosphate > sulfate > bicarbonate, showing a strong influence of electrostatic adsorption on the catalytic reduction of nitrate. However, no direct trend was observed relating the levels of interferents to the impact on the selectivity of the bimetallic catalyst using formic acid as a reducing agent. For both bicarbonate and phosphate, at lower levels, higher selectivity to nitrogen was obtained than for the reaction in the absence of interferents. On the other hand, increasing sulfate concentration led to a decrease in nitrate conversion. The mixtures of co-anions also showed a decrease in the catalytic activity. At 120 min, a N2 selectivity higher than 95% was obtained, except for the C50-S20 (bicarbonate 50 ppm-sulfate 20 ppm) mixture which showed the lowest selectivity to N2 value (87.3%). The loss of catalyst activity was found to be reversible and not permanent.


Assuntos
Nitratos , Água , Substâncias Redutoras , Bicarbonatos , Sulfatos , Catálise
5.
Nano Lett ; 22(3): 1391-1397, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080392

RESUMO

Pd has been regarded as one of the alternatives to Pt as a promising hydrogen evolution reaction (HER) catalyst. Strategies including Pd-metal alloys (Pd-M) and Pd hydrides (PdHx) have been proposed to boost HER performances. However, the stability issues, e.g., the dissolution in Pd-M and the hydrogen releasing in PdHx, restrict the industrial application of Pd-based HER catalysts. We here design and synthesize a stable Pd-Cu hydride (PdCu0.2H0.43) catalyst, combining the advantages of both Pd-M and PdHx structures and improving the HER durability simultaneously. The hydrogen intercalation is realized under atmospheric pressure (1.0 atm) following our synthetic approach that imparts high stability to the Pd-Cu hydride structure. The obtained PdCu0.2H0.43 catalyst exhibits a small overpotential of 28 mV at 10 mA/cm2, a low Tafel slope of 23 mV/dec, and excellent HER durability due to its appropriate hydrogen adsorption free energy and alleviated metal dissolution rate.

6.
Small ; 17(9): e1904126, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31608601

RESUMO

Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.

7.
Chem Asian J ; 14(23): 4217-4222, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596025

RESUMO

Exploiting high-performance and inexpensive electrocatalysts for methanol electro-oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus-like PdCu nanocrystals (NCs) via a one-step and template-free method. The echinus-like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites. Owing to the novel nanoarchitecture and electronic effect of the PdCu alloy, the echinus-like PdCu NCs display high electrocatalytic performance toward methanol oxidation reaction in an alkaline medium. The mass activity of echinus-like PdCu NCs is 1202.1 mA mgPd -1 , which is 3.7 times that of Pd/C catalysts. In addition, the echinus-like structure, as a kind of three-dimensional self-supported nanoarchitecture, endows PdCu NCs with significantly enhanced stability and durability. Hence, the echinus-like PdCu NCs hold prospect of being employed as electrocatalysts for direct alcohol fuel cells.

8.
ACS Appl Mater Interfaces ; 9(39): 33775-33790, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28899089

RESUMO

Fabrication of multimetallic nanocatalysts with controllable composition remains a challenge for the development of low-cost electrocatalysts, and incorporating metal-based catalysts into active carbon nanoarchitectures represents an emerging strategy to improve the catalytic performance of electrocatalysts. Herein, a facile method developed for Pd nanoparticle (NP)-based multimetallic alloys incorporated on polypyrrole (Ppy) nanofibers by in situ nucleation and growth of NPs using colloidal radiolytic technique is described. Electrochemical measurement suggests that the as-prepared catalysts demonstrate dramatically enhanced electrocatalytic activity for ethanol oxidation in alkaline medium. The ultrasmall Pd30Pt29Au41/Ppy nanohybrids (∼8 nm) exhibit excellent electrocatalytic activity, which is ∼5.5 times higher than that of its monometallic counterparts (12 A/mg Pd, 5 times higher activity compared to that of Pd/C catalyst). Most importantly, the ternary nanocatalyst shows no obvious change in chemical structure and long-term stability, reflected in the 2% loss in forward current density during 1000 cycles. The superior catalytic activity and durability of the nanohybrids have been achieved due to the formation of Pt-Pd-Au heterojunctions with cooperative action of the three metals in the alloy composition, and the strong interactions between the Ppy nanofiber support with the metal NPs. The facile synthetic approach provides a new generation of polymer-supported metal alloy hybrid nanostructures as potential electrocatalysts with superior catalytic activity for fuel cell applications.

9.
ACS Appl Mater Interfaces ; 8(50): 34497-34505, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27935683

RESUMO

Two types of PdCu2 nanoparticles were prepared through one-pot synthesis and a two-step reducing process, named as PdCu2-1 and PdCu2-2, respectively. The morphology and structure of as-prepared samples were investigated by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectrometry. Results showed that more Pd atoms were buried in the inside of PdCu2-1, whereas more available Pd sites were distributed on the surface of PdCu2-2. The electrochemical measurements indicated that both PdCu2-1 and PdCu2-2 nanoparticles showed a higher electrocatalytic activity than that for pure Pd nanoparticles. In particular, PdCu2-2 predictably exhibited a better stability and durability as well as a lower onset potential and a higher catalytic current density than that of PdCu2-1 toward ethanol oxidation in alkaline media. On the basis of these studies, the formation mechanisms of both the PdCu2 catalysts and the relationship between their structure and properties were discussed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA