Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Dis ; 108(7): 1982-1986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937876

RESUMO

Ganoderma boninense is a basidiomycete pathogen of African oil palm (Elaeis guineensis) and the causal agent of basal stem rot (BSR) disease, which is the most destructive fungal disease of oil palm in Southeast Asia. The disease is fatal for infected palms and can result in 50 to 80% losses in oil yields because of a reduction in productive life span and a yield decline of infected oil palms. In this study, G. boninense isolates collected from different locations and planting blocks with different palm ages were molecularly characterized using microsatellite genotyping. Results showed high pathogen genetic diversity (He = 0.67 to 0.74) among planting blocks and between oil palm estates. Two nearby planting blocks with similar planting ages (i.e., 1999 and 2001) had a similar percentage of BSR incidence (>20%) but showed distinct Ganoderma genetic structure as detected using STRUCTURE. Similar results were obtained from another trial site where planting blocks differing in planting age but located only less than 1 km apart showed a diverse genetic background. The pathogen genetic admixture of the oldest planting (>30% BSR incidence) differed significantly from the younger planting (1.8 to 2.8% BSR incidence, breeding trial block), suggesting that the host-pathogen genotype interaction may impact the Ganoderma genetic variation over time. The genetic structure of G. boninense, as revealed in this study, implies positive selection resulting from the pathogen genetic variation, host-pathogen interaction, and possible introductions of novel genetic variants (through spores) from adjacent plantings. These findings offer new insights into the genetic changes of G. boninense over time. The information is essential to design disease management strategies and breeding for BSR resistance in oil palm.


Assuntos
Arecaceae , Ganoderma , Variação Genética , Doenças das Plantas , Ganoderma/genética , Arecaceae/microbiologia , Doenças das Plantas/microbiologia , Malásia , Repetições de Microssatélites/genética , Genótipo
2.
Plant Physiol Biochem ; 212: 108774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805757

RESUMO

Adopting disease-tolerant grapevines is an efficient option to implement a smarter management strategy limiting the environmental impacts linked to pesticide use. However, little is known on their production of fruit metabolites regarding expected future climate fluctuations, such as increased water shortage. Moreover, previous studies about how water deficit impacts grape composition, lack accuracy due to imprecise timing of fruit sampling. In this study, we phenotyped six new fungus-tolerant genotypes exposed to varying water status in field-grown conditions. The accumulation of water, main cations, primary and secondary metabolites were precisely monitored at the arrest of phloem unloading in fruits, which was targeted at the whole cluster level. The goal was to decipher the effects of both genotype and water deficit on the allocation of carbon into soluble sugars, organic acids, amino acids and anthocyanins. The results revealed that the effect of decreased water availability was specific to each berry component. While fruit sugar concentration remained relatively unaffected, the malic/tartaric acid balance varied based on differences among genotypes. Despite showing contrasted strategies on carbon allocation into berry metabolites, all genotypes reduced fruit yield and the amount of compounds of interest per plant under water deficit, with the extent of reduction being genotype-dependent and correlated with the response of berry volume to plant water status. This first set of data provides information to help reasoning the adaptation of these varieties according to the expected risks of drought and the possibilities of mitigating them through irrigation.


Assuntos
Carbono , Frutas , Vitis , Vitis/metabolismo , Vitis/microbiologia , Vitis/genética , Frutas/metabolismo , Frutas/microbiologia , Frutas/genética , Carbono/metabolismo , Água/metabolismo , Genótipo , Aminoácidos/metabolismo , Desidratação
3.
Front Microbiol ; 15: 1348259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414771

RESUMO

Introduction: Continuous cropping affected the stability of soil enzyme activity and the structural characteristics of microbial community. Owing to challenges in the study of complex rhizosphere microbial communities, the composition and function of these microbial communities in farmland ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere of wine grapes with different years of continuous cropping and investigated their relationships with soil enzyme activity. Methods: Metagenomic sequencing was conducted on the rhizosphere soils from one uncultivated wasteland and four vineyards with varying durations of continuous cropping. Results: The predominant microbial were bacteria (98.39%), followed by archaea (1.15%) and eukaryotes (0.45%). Continuous cropping caused a significant increase in the relative abundance of Rhizobiales and Micrococcales but a marked decrease in Solirubrobacterales. At the genus level, 75, 88, 65, 132, and 128 microbial genera were unique to uncultivated wasteland, 5, 10, 15, and 20 years of continuous cropping, respectively. The relative abundance of genes with signal transduction function was the highest. The activity of all enzymes measured in this study peaked at 5 years of continuous cropping, and then decreased with 10 to 15 year of continuous cropping, but increased at 20 years again. In addition, soil enzyme activity, especially of alkaline phosphatase was significantly correlated with the diversity of the dominant microorganisms at the genus level. Moreover, the coupled enzyme activities had a greater impact on the diversity of the microbial community than that of individual enzymes. Conclusion: Our findings reveal the composition and function of the soil microbial communities and enzymes activity in response to changes in cropping years, which has important implications for overcoming continuous cropping obstacles and optimizing land use.

4.
An. acad. bras. ciênc ; 79(4): 767-776, Dec. 2007. graf, tab
Artigo em Inglês | LILACS | ID: lil-470046

RESUMO

The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2 percent 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.


O uso do traçador 15N em pesquisas agronômicas que envolvem o ciclo do nitrogênio (N) e o destino do N do fertilizante está bem estabelecido, entretanto, para o caso de experimentação com plantas perenes como citrus, café e seringueira, ainda existem limitações devidas ao porte das plantas, à amostragem, aos níveis de detecção e à interferência no sistema. Este estudo procura contribuir metodologicamente no delineamento experimental e no desenvolvimento desse tipo de experimentação, em condições de campo, fazendo uso, por dois anos, do experimento de uma cultura de café adubada com fertilizante marcado com 15N. O N da planta derivado do fertilizante foi estudado nas diferentes partes da planta de café para determinar sua distribuição dentro dela e a eficiência agronômica da prática de adubação. Um enriquecimento do N do fertilizante da ordem de 2 por cento em abundância de 15N foi suficiente para estudar taxas de absorção de N e estabelecer balanços do N do fertilizante depois de um e dois anos de cultivo. A principal fonte de erros dos valores estimados está na variabilidade agronômica das repetições e não na precisão das medidas de conteúdo de N e de enriquecimento em 15N por espectrometria de massa.


Assuntos
Café/metabolismo , Fertilizantes/análise , Isótopos de Nitrogênio , Nitrogênio/metabolismo , Disponibilidade Biológica , Química Agrícola , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA