Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469150

RESUMO

As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp coding sequence is both necessary and sufficient for RNA localization, consistent with a co-translational transport mechanism. We identify regions within the Plp coding sequence that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.

2.
EMBO Rep ; 24(12): e56870, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37971148

RESUMO

Various mammalian cells have autonomous cellular clocks that are produced by the transcriptional cycle of clock genes. Cellular clocks provide circadian rhythms for cellular functions via transcriptional and cytoskeletal regulation. The vast majority of mammalian cells possess a primary cilium, an organelle protruding from the cell surface. Here, we investigated the little-known relationship between circadian rhythm and primary cilia. The length and number of primary cilia showed circadian dynamics both in vitro and in vivo. The circadian rhythm of primary cilium length was abolished by SR9011 and Bmal1 knockout. A centrosomal protein, pericentrin, transiently accumulates in centriolar satellites, the base of primary cilia at the shortest cilia phase, and induces elongation of primary cilia at the longest cilia phase in the circadian rhythm of primary cilia. In addition, rhythmic cell migration during wound healing depends on the length of primary cilia and affects the rate of wound healing. Our findings demonstrate that the circadian dynamics of primary cilium length by clock genes control fibroblast migration and could provide new insights into chronobiology.


Assuntos
Cílios , Relógios Circadianos , Animais , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Membrana Celular , Fibroblastos/metabolismo , Movimento Celular/genética , Relógios Circadianos/genética , Mamíferos
3.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656118

RESUMO

Trisomy 21, the genetic cause of Down syndrome, disrupts primary cilia formation and function, in part through elevated Pericentrin, a centrosome protein encoded on chromosome 21. Yet how trisomy 21 and elevated Pericentrin disrupt cilia-related molecules and pathways, and the in vivo phenotypic relevance remain unclear. Utilizing ciliogenesis time course experiments combined with light microscopy and electron tomography, we reveal that chromosome 21 polyploidy elevates Pericentrin and microtubules away from the centrosome that corral MyosinVA and EHD1, delaying ciliary membrane delivery and mother centriole uncapping essential for ciliogenesis. If given enough time, trisomy 21 cells eventually ciliate, but these ciliated cells demonstrate persistent trafficking defects that reduce transition zone protein localization and decrease sonic hedgehog signaling in direct anticorrelation with Pericentrin levels. Consistent with cultured trisomy 21 cells, a mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers at P4. Our work reveals that elevated Pericentrin from trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding mechanism results in signaling deficiencies consistent with the neurological phenotypes found in individuals with Down syndrome.


Human cells typically have 23 pairs of structures known as chromosomes. Each chromosome contains a unique set of genes which provide the instructions needed to make proteins and other essential molecules found in the body. Individuals with Down syndrome have an extra copy of chromosome 21. This genetic alteration is known as trisomy 21 and affects many different organs in the body, leading to various medical conditions including intellectual disability, heart defects, and immune deficiencies. A recent study showed that cells from individuals with Down syndrome had defects in forming primary cilia ­ structures on the surface of cells which work as signaling hubs to control how cells grow and develop. These cilia defects were in large part due to excess levels of a protein known as Pericentrin, which is encoded by a gene found on chromosome 21. But it is unclear how Pericentrin disrupts cilia assembly, and how this may contribute to the medical conditions observed in individuals with Down syndrome. To address these questions, Jewett et al. studied human cells that had been engineered to have trisomy 21. The experiments found that trisomy 21 led to higher levels of Pericentrin and altered the way molecules were organized at the sites where primary cilia form. This caused the components required to build and maintain the primary cilium to become trapped in the wrong locations. The trisomy 21 cells were eventually able to rearrange the molecules and build a primary cilium, but it took them twice as long as cells with 23 pairs of chromosomes and their primary cilium did not properly work. Further experiments were then conducted on mice that had been engineered to have an extra copy of a portion of genes on human chromosome 21, including the gene for Pericentrin. Jewett et al. found that these mice assembled cilia later and had defects in cilia signaling, similar to the human trisomy 21 cells. This resulted in mild abnormalities in brain development that were consistent with what occurs in individuals with Down syndrome. These findings suggest that the elevated levels of Pericentrin in trisomy 21 causes changes in cilia formation and function which, in turn, may alter how the mouse brain develops. Further studies will be required to find out whether defects in primary cilia may contribute to other medical conditions observed in individuals with Down syndrome.


Assuntos
Síndrome de Down , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo
4.
Curr Biol ; 33(5): 912-925.e6, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36720222

RESUMO

Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.


Assuntos
Segregação de Cromossomos , Microtúbulos , Animais , Bovinos , Microtúbulos/metabolismo , Cinetocoros/metabolismo , Tubulina (Proteína)/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
5.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259662

RESUMO

Spc110 is an essential component of the spindle pole body (SPB), the yeast equivalent of the centrosome, that recruits the γ-tubulin complex to the nuclear side of the SPB to produce the microtubules that form the mitotic spindle. Here, we identified phosphosites S11 and S36 in maternally originated Spc110 and explored their functions in vivo. Yeast expressing non-phosphorylatable Spc110S11A had a distinct spindle phenotype characterised by higher levels of α-tubulin, which was frequently asymmetrically distributed between the two SPBs. Furthermore, expression of the double mutant Spc110S11AS36A had a delayed cell cycle progression. Specifically, the final steps of mitosis were delayed in Spc110S11AS36A cells, including expression and degradation of the mitotic cyclin Clb2, disassembling the mitotic spindle and re-localizing Cdc14 to the nucleoli, resulting in late mitotic exit and entry in G1. Thus, we propose that Spc110 phosphorylation at S11 and S36 is required to regulate timely cell cycle progression in budding yeast. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Centrossomo/metabolismo , Corpos Polares do Fuso/metabolismo , Fuso Acromático/metabolismo , Mitose , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
6.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787744

RESUMO

The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.


Assuntos
Centríolos , Dineínas , Animais , Centríolos/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Interfase , Microtúbulos/metabolismo
7.
J Cardiovasc Dev Dis ; 8(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436229

RESUMO

Induction of cardiomyocyte proliferation is a promising option to regenerate the heart. Thus, it is important to elucidate mechanisms that contribute to the cell cycle arrest of mammalian cardiomyocytes. Here, we assessed the contribution of the pericentrin (Pcnt) S isoform to cell cycle arrest in postnatal cardiomyocytes. Immunofluorescence staining of Pcnt isoforms combined with SiRNA-mediated depletion indicates that Pcnt S preferentially localizes to the nuclear envelope, while the Pcnt B isoform is enriched at centrosomes. This is further supported by the localization of ectopically expressed FLAG-tagged Pcnt S and Pcnt B in postnatal cardiomyocytes. Analysis of centriole configuration upon Pcnt depletion revealed that Pcnt B but not Pcnt S is required for centriole cohesion. Importantly, ectopic expression of Pcnt S induced centriole splitting in a heterologous system, ARPE-19 cells, and was sufficient to impair DNA synthesis in C2C12 myoblasts. Moreover, Pcnt S depletion enhanced serum-induced cell cycle re-entry in postnatal cardiomyocytes. Analysis of mitosis, binucleation rate, and cell number suggests that Pcnt S depletion enhances serum-induced progression of postnatal cardiomyocytes through the cell cycle resulting in cell division. Collectively, our data indicate that alternative splicing of Pcnt contributes to the establishment of cardiomyocyte cell cycle arrest shortly after birth.

8.
JACC Case Rep ; 3(5): 795-800, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34317628

RESUMO

We encountered siblings with familial Majewski osteodysplastic primordial dwarfism type II (MOPD II) with acute myocardial infarction in adolescence and in their early 20s. We successfully performed percutaneous and surgical coronary interventions. From these cases, we were able to better understand coronary artery disease of MOPD II and provide better management. (Level of Difficulty: Intermediate.).

9.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34152366

RESUMO

Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.


Assuntos
Aurora Quinase A , Centro Organizador dos Microtúbulos , Fuso Acromático , Animais , Aurora Quinase A/genética , Meiose , Camundongos , Oócitos , Fuso Acromático/genética , Polos do Fuso/genética
10.
Front Endocrinol (Lausanne) ; 12: 760541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975747

RESUMO

Follicular thyroid tissue originates from progenitors derived from a midline endodermal primordium. Current understanding infers that folliculogenesis in the embryonic thyroid designates the latest morphogenetic event taking place after the final anatomical shape and position of the gland is established. However, this concept does not consider the fact that the thyroid isthmus develops chronologically before the lobes and also contains all progenitors required for lobulation. To elucidate whether cells committed to a thyroid fate might be triggered to differentiate asynchronously related to maturation and developmental stage, mouse embryonic thyroid tissues from E12.5-17.5 were subjected to immunofluorescent labeling of biomarkers (progenitors: NKX2-1; differentiation: thyroglobulin/TG); folliculogenesis: E-cadherin/CDH1; luminogenesis: mucin 1/MUC1; apical polarity: pericentrin/PCNT; basement membrane: laminin; growth: Ki67), quantitative RT-PCR analysis (Nkx2.1, Tg, Muc1) and transmission electron microscopy. Tg expression was detectable as early as E12.5 and gradually increased >1000-fold until E17.5. Muc1 and Nkx2.1 transcript levels increased in the same time interval. Prior to lobulation (E12.5-13.5), MUC1 and TG distinguished pre-follicular from progenitor cells in the developing isthmus characterized by intense cell proliferation. Luminogenesis comprised redistribution of MUC1+ vesicles or vacuoles, transiently associated with PCNT, to the apical cytoplasm and the subsequent formation of MUC1+ nascent lumens. Apical polarization of pre-follicular cells and lumen initiation involved submembraneous vesicular traffic, reorganization of adherens junctions and ciliogenesis. MUC1 did not co-localize with TG until a lumen with a MUC1+ apical membrane was established. MUC1 delineated the lumen of all newly formed follicles encountered in the developing lobes at E15.5-17.5. Folliculogenesis started before establishment of a complete follicular basal lamina. These observations indicate that embryonic thyroid differentiation is an asynchronous process consistent with the idea that progenitors attaining a stationary position in the connecting isthmus portion undergo apical polarization and generate follicles already at a primordial stage of thyroid development, i.e. foregoing growth of the lobes. Although the thyroid isthmus eventually comprises minute amounts of the total thyroid volume and contributes little to the overall hormone production, it is of principal interest that local cues related to the residence status of cells - independently of a prevailing high multiplication rate - govern the thyroid differentiation program.


Assuntos
Membrana Basal/fisiologia , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Células Epiteliais da Tireoide/fisiologia , Glândula Tireoide/fisiologia , Animais , Membrana Basal/metabolismo , Biomarcadores/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo
11.
Clin Genet ; 98(3): 282-287, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557621

RESUMO

Biallelic loss-of-function mutations in the centrosomal pericentrin gene (PCNT) cause microcephalic osteodysplastic primordial dwarfism type II (MOPDII), which is characterized by extreme growth retardation, microcephaly, skeletal dysplasia, and dental anomalies. Life expectancy is reduced due to a high risk of cerebral vascular anomalies. Here, we report two siblings with MOPDII and attenuated growth restriction, and pachygyria. Compound heterozygosity for two novel truncated PCNT variants was identified. Both truncated PCNT proteins were expressed in patient's fibroblasts, with a reduced total protein amount compared to control. Patient's fibroblasts showed impaired cell cycle progression. As a novel finding, 20% of patient's fibroblasts were shown to express PCNT comparable to control. This was associated with normal mitotic morphology and normal co-localization of mutated PCNT with centrosome-associated proteins γ-tubulin and centrin 3, suggesting some residual function of truncated PCNT proteins. These data expand the clinical and molecular spectrum of MOPDII and indicate that residual PCNT function might be associated with attenuated growth restriction in MOPDII.


Assuntos
Antígenos/genética , Nanismo/genética , Retardo do Crescimento Fetal/genética , Predisposição Genética para Doença , Lisencefalia/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Alelos , Centrossomo/metabolismo , Criança , Pré-Escolar , Nanismo/patologia , Feminino , Retardo do Crescimento Fetal/patologia , Fibroblastos/metabolismo , Humanos , Lisencefalia/patologia , Mutação com Perda de Função/genética , Masculino , Microcefalia/patologia , Osteocondrodisplasias/patologia , Irmãos , Tubulina (Proteína)/genética , Adulto Jovem
12.
Mol Oncol ; 14(8): 1898-1909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255253

RESUMO

Centrosome amplification (CA) is a common phenomenon in cancer, promotes genomic stability and cancer evolution, and has been reported to promote metastasis. CA promotes a stochastic gain/loss of chromosomes during cell division, known as chromosomal instability (CIN). However, it is unclear whether CA is present in circulating tumor cells (CTCs), the seeds for metastasis. Here, we surveyed CA in CTCs from human subjects with metastatic breast cancer. CTCs were captured by CD45 exclusion and selection of EpCAM-positive cells using an exclusion-based sample preparation technology platform known as VERSA (versatile exclusion-based rare sample analysis). Centriole amplification (centrin foci> 4) is the definitive assay for CA. However, determination of centrin foci is technically challenging and incompatible with automated analysis. To test if the more technically accessible centrosome marker pericentrin could serve as a surrogate for centriole amplification in CTCs, cells were stained with pericentrin and centrin antibodies to evaluate CA. This assay was first validated using breast cancer cell lines and a nontransformed epithelial cell line model of inducible CA, then translated to CTCs. Pericentrin area and pericentrin area x intensity correlate well with centrin foci, validating pericentrin as a surrogate marker of CA. CA is found in CTCs from 75% of subjects, with variability in the percentage and extent of CA in individual circulating cells in a given subject, similar to the variability previously seen in primary tumors and cell lines. In summary, we created, validated, and implemented a novel method to assess CA in CTCs from subjects with metastatic breast cancer. Such an assay will be useful for longitudinal monitoring of CA in cancer patients and in prospective clinical trials for assessing the impact of CA on response to therapy.


Assuntos
Antígenos/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Centrossomo/metabolismo , Células Neoplásicas Circulantes/metabolismo , Idoso , Antígenos/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Centríolos/metabolismo , Centrossomo/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
13.
Toxicology ; 439: 152466, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315717

RESUMO

Glyphosate is the most popular herbicide used in modern agriculture, and its use has been increasing substantially since its introduction. Accordingly, glyphosate exposure from food and water, the environment, and accidental and occupational venues has also increased. Recent studies have demonstrated a relationship between glyphosate exposure and a number of disorders such as cancer, immune and metabolic disorders, endocrine disruption, imbalance of intestinal flora, cardiovascular disease, and infertility; these results have given glyphosate a considerable amount of media and scientific attention. Notably, glyphosate is a powerful metal chelator, which could help explain some of its effects. Recently, our findings on 2,3-dimercapto-1-propanesulfonic acid, another metal chelator, showed deterioration of oocyte quality. Here, to generalize, we investigated the effects of glyphosate (0 - 300 µM) on metaphase II mouse oocyte quality and embryo damage to obtain insight on its mechanisms of cellular action and the tolerance of oocytes and embryos towards this chemical. Our work shows for the first time that glyphosate exposure impairs metaphase II mouse oocyte quality via two mechanisms: 1) disruption of the microtubule organizing center and chromosomes such as anomalous pericentrin formation, spindle fiber destruction and disappearance, and defective chromosomal alignment and 2) substantial depletion of intracellular zinc bioavailability and enhancement of reactive oxygen species accumulation. Similar effects were found in embryos. These results may help clarify the effects of glyphosate exposure on female fertility and provide counseling and preventative steps for excessive glyphosate intake and resulting oxidative stress and reduced zinc bioavailability.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Metáfase/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Animais , Cromossomos/efeitos dos fármacos , Feminino , Glicina/toxicidade , Infertilidade Feminina/induzido quimicamente , Infertilidade Feminina/patologia , Camundongos , Microtúbulos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Fuso Acromático/efeitos dos fármacos , Glifosato
14.
Dev Cell ; 53(1): 86-101.e7, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169161

RESUMO

The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Cabeça do Espermatozoide/metabolismo , Cauda do Espermatozoide/metabolismo , Animais , Corpos Basais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Masculino
15.
J Biol Chem ; 294(49): 18742-18755, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666336

RESUMO

The centrosome is a cytoplasmic nonenveloped organelle functioning as one of the microtubule-organizing centers and composing a centriole center surrounded by pericentriolar material (PCM) granules. PCM consists of many centrosomal proteins, including PCM1 and centrosomal protein 131 (CEP131), and helps maintain centrosome stability. Zika virus (ZIKV) is a flavivirus of the family Flaviviridae whose RNA and viral particles are replicated in the cytoplasm. However, how ZIKV interacts with host cell components during its productive infection stage is incompletely understood. Here, using several primate cell lines, we report that ZIKV infection disrupts and disperses the PCM granules. We demonstrate that PCM1- and CEP131-containing granules are dispersed in ZIKV-infected cells, whereas the centrioles remain intact. We found that ZIKV does not significantly alter cellular skeletal proteins, and, hence, these proteins may not be involved in the interaction between ZIKV and centrosomal proteins. Moreover, ZIKV infection decreased PCM1 and CEP131 protein, but not mRNA, levels. We further found that the protease inhibitor MG132 prevents the decrease in PCM1 and CEP131 levels and centriolar satellite dispersion. Therefore, we hypothesized that ZIKV infection induces proteasomal PCM1 and CEP131 degradation and thereby disrupts the PCM granules. Supporting this hypothesis, we show that ZIKV infection increases levels of mind bomb 1 (MIB1), previously demonstrated to be an E3 ubiquitin ligase for PCM1 and CEP131 and that ZIKV fails to degrade or disperse PCM in MIB1-ko cells. Our results imply that ZIKV infection activates MIB1-mediated ubiquitination that degrades PCM1 and CEP131, leading to PCM granule dispersion.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infecção por Zika virus/metabolismo , Animais , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HEK293 , Humanos , Immunoblotting , Ubiquitina-Proteína Ligases/genética , Células Vero , Zika virus , Infecção por Zika virus/genética
16.
Cells ; 8(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614616

RESUMO

Syne-2 (also known as Nesprin-2) is a member of a family of proteins that are found primarily in the outer nuclear membrane, as well as other subcellular compartments. Syne-2 contains a C-terminal KASH transmembrane domain and is part of a protein network that associates the nuclear envelope to the cytoskeleton via the binding to actin filaments. Syne-2 plays a role in nuclear migration, nuclear positioning during retinal development, and in ciliogenesis. In a previous study, we showed a connection between Syne-2 and the multifunctional scaffold protein Pericentrin (Pcnt). The elimination of the interaction of Syne-2 and Pcnt showed defects in nuclear migration and the formation of outer segments during retinal development, as well as disturbances in centrosomal migration at the beginning of ciliogenesis in general. In this study, the Syne-2 KO mouse model Nesprin-2△ABD (Syne-2tm1Ngl, MGI) with special attention to Pcnt and ciliogenesis was analyzed. We show reduced expression of Syne-2 in the retina of the Syne-2 KO mouse but found no significant structural-and only a minor functional-phenotype. For the first time, detailed expression analyses showed an expression of a Syne-2 protein larger than 400 kDa (~750 kDa) in the Syne2/Nesprin-2 KO mouse. In conclusion, the lack of an overt phenotype in Syne-2/Nesprin-2 KO mice suggests the usage of alternative translational start sites, producing Syne-2 splice variants with an intact Pcnt interaction site. Nevertheless, deletion of the actin-binding site in the Syne-2/Nesprin-2 KO mouse revealed a high variability in scotopic oscillatory potentials assuming a novel function of Syne-2 in synchronizing inner retinal processes.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Retina/patologia , Processamento Alternativo , Animais , Antígenos/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Regulação para Baixo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Fenótipo , Transporte Proteico , Retina/metabolismo
17.
BMC Pediatr ; 19(1): 329, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510961

RESUMO

BACKGROUND: Microcephalic osteodysplastic primordial dwarfism, type II (MOPD II) is a rare disease that is assumed to be caused by a pericentrin (PCNT) gene mutation. Clinical manifestations have been reported in pediatrics and neurology; however, only a few ocular findings have been documented. CASE PRESENTATION: We present three unrelated cases of MOPD II with similar facial features and short stature. Unlike the cases described in the literature, all subjects had normal birth weight and height but their growth was retarded thereafter. In addition to delayed milestones, they have a broad forehead, maxillary protrusion, long peaked nose, high nasal bridge, low-set large ears, extreme reromicrogenia, and normal-sized teeth. These three patients had similar ocular manifestations with the short axial length associated with high hyperopia more than + 9 diopters (D) and macular scarring. The oldest subject was a 20 year-old male without neurological symptoms. One female subject had developed alopecia during the previous 2 years. The other female subject had moyamoya disease, but a genetic study revealed a normal PCNT gene. CONCLUSION: This is the first report of MOPD II focusing on ocular findings, suggesting that macular dystrophy and high hyperopia are the common ocular characteristics of MOPD II. Prompt referral to an ophthalmologist is essential. Although refractive amblyopia can be treated with optical correction, visual prognosis may be poor due to maculopathy.


Assuntos
Antígenos/genética , Nanismo/complicações , Oftalmopatias Hereditárias/etiologia , Hiperopia/etiologia , Degeneração Macular/etiologia , Microcefalia/complicações , Osteocondrodisplasias/complicações , Adolescente , Astigmatismo/diagnóstico , Peso ao Nascer , Pré-Escolar , Exotropia/diagnóstico , Oftalmopatias Hereditárias/diagnóstico , Feminino , Fundo de Olho , Humanos , Hiperopia/diagnóstico , Degeneração Macular/diagnóstico , Masculino , Doença de Moyamoya/diagnóstico por imagem , Mutação , Midriáticos , Nistagmo Patológico/diagnóstico , Fenótipo , Refração Ocular , Tomografia de Coerência Óptica , Acuidade Visual , Adulto Jovem
18.
BMC Med Genet ; 20(1): 126, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311520

RESUMO

BACKGROUND: Osteodysplasia of the oral and maxillofacial bone is generally accompanied by systemic bone abnormalities (such as short stature, joint contracture) or other systemic abnormalities (such as renal, dermatological, cardiovascular, optic, or hearing disorders). However, it does not always present this way. Recent reports have suggested that genome-wide sequencing is an effective method for identifying rare or new disorders. Here, we performed whole-exome sequencing (WES) in a patient with a unique form of acquired, local osteodysplasia of the oral and maxillofacial region. CASE PRESENTATION: A 46-year-old woman presented to our hospital with the complaint of gradually moving mandibular teeth (for 6 months), changing facial appearance, and acquired osteolysis of the oral and maxillofacial bones, showing mandibular hypoplasia without family history. Upon skeletal examination, there were no abnormal findings outside of the oral and maxillofacial area; the patient had a height of 157 cm and bone mineral density (according to dual energy x-ray absorptiometry) of 90%. Results of blood and urine tests, including evaluation of bone metabolism markers and neurological and cardiovascular examinations, were normal. We performed WES of genomic DNA extracted from the blood of this patient and her mother, who did not have the disease, as a negative control. We identified 83 new missense variants in the patient, not detected in her mother, including a candidate single nucleotide variant in exon 14 of PCNT (pericentrin). Critical homozygous or compound heterozygous variants in PCNT are a known cause of microcephalic osteodysplastic primordial dwarfism type II accompanied by mandibular hypoplasia, which is similar to the maxillofacial phenotype in this patient. CONCLUSIONS: Protein simulations performed using Polymorphism Phenotyping v2 and Combined Annotation Dependent Depletion software indicated that this missense variant is likely to disrupt the PCNT protein structure. These results suggest that this is a new form of osteolysis related to this PCNT variant.


Assuntos
Antígenos/genética , Nanismo/genética , Retardo do Crescimento Fetal/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Antígenos/química , Sequência de Bases , Densidade Óssea , Nanismo/diagnóstico por imagem , Nanismo/fisiopatologia , Éxons , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/fisiopatologia , Heterozigoto , Homozigoto , Humanos , Mandíbula/patologia , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Pessoa de Meia-Idade , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/fisiopatologia , Osteólise , Fenótipo , Tomógrafos Computadorizados , Doenças Dentárias/congênito , Doenças Dentárias/diagnóstico por imagem , Doenças Dentárias/genética , Raiz Dentária/anormalidades , Raiz Dentária/diagnóstico por imagem , Sequenciamento do Exoma
19.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182187

RESUMO

The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.


Assuntos
Antígenos/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia Confocal , Microtúbulos/metabolismo , Ligação Proteica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Imagem com Lapso de Tempo/métodos
20.
Am J Transl Res ; 11(4): 2257-2268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105833

RESUMO

OBJECTIVE: To explore the role and mechanism of pericentrin (PCNT) in impaired glucose tolerance. METHODS: Mouse model of specific PCNT reduction in ß-cells (PCNTßPCNT) was built using a Tet-on induction system; mouse model of impaired glucose tolerance was built by high-fat feeding. MIN6 cells were divided into control and Si-PCNT groups. RESULTS: An obvious decrease in PCNT, F-actin, and insulin expression in Si-PCNT cells (P < 0.01) was observed, and the stimulating effect of GLP-1 on first phase insulin secretion disappeared in Si-PCNT cells. PCNTß exhibited impaired first phase insulin secretion and abnormal glucose tolerance (P < 0.05 or P < 0.01). Fewer insulin granules smaller than 300 nm were detected in PCNTß (P < 0.05). PCNT expression decreased progressively with insulin resistance (P < 0.05 and P < 0.01). First phase insulin secretion and glucose tolerance decreased with PCNT levels. The homeostasis model assessment-insulin resistance was negatively correlated with PCNT expression. CONCLUSIONS: PCNT plays an important role in modulating first phase insulin release by adjusting distribution of insulin granules and was closely related to development of impaired glucose tolerance induced by the high-fat diet. PCNT might be a therapeutic target for diabetes prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA