Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734349

RESUMO

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Assuntos
Fármacos Antiobesidade , Microbioma Gastrointestinal , Inulina , Obesidade , Solubilidade , Taninos , Inulina/química , Inulina/farmacologia , Taninos/química , Taninos/farmacologia , Animais , Camundongos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Polimerização , Diospyros/química , Masculino , Dieta Hiperlipídica/efeitos adversos , Polifenóis/química , Polifenóis/farmacologia
2.
J Sci Food Agric ; 104(10): 6118-6126, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445539

RESUMO

BACKGROUND: Saccharomyces cerevisiae plays a pivotal role in various industrial processes, including bioethanol production and alcoholic beverage fermentation. However, during these fermentations, yeasts are subjected to various environmental stresses, such as ethanol stress, which hinder cell growth and ethanol production. Genetic manipulations and the addition of natural ingredients rich in antioxidants to the culture have been shown to overcome this. Here, we investigated the potential of persimmon tannins, known for their antioxidative properties, to enhance the ethanol stress tolerance of yeast. RESULTS: Assessment of the effects of 6.25 mg mL-1 persimmon tannins after 48 h incubation revealed cell viability to be increased by 8.9- and 6.5-fold compared to the control treatment with and without 12.5% ethanol, respectively. Furthermore, persimmon tannins reduced ethanol-induced oxidative stress, including the production of cellular reactive oxygen species and acceleration of lipid peroxidation. However, persimmon tannins could hardly overcome ethanol-induced cell membrane damage. CONCLUSION: The findings herein indicate the potential of persimmon tannin as a protective agent for increasing yeast tolerance to ethanol stress by restricting oxidative damage but not membrane damage. Overall, this study unveils the implications of persimmon tannins for industries relying on yeast. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Diospyros , Etanol , Fermentação , Estresse Oxidativo , Saccharomyces cerevisiae , Taninos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Diospyros/química , Taninos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Int J Biol Macromol ; 242(Pt 3): 125120, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263329

RESUMO

One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.


Assuntos
Diospyros , Proantocianidinas , Animais , Taninos/química , Extratos Vegetais/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Diospyros/química , Frutas/química
4.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049081

RESUMO

1,5-Anhydroglucitol (1,5-AG) is a sensitive biomarker for real-time detection of diabetes mellitus. In this study, an electrochemical biosensor to specifically detect 1,5-AG levels based on persimmon-tannin-reduced graphene oxide-PtPd nanocomposites (PT-rGO-PtPd NCs), which were modified onto the surface of a screen-printed carbon electrode (SPCE), was designed. The PT-rGO-PtPd NCs were prepared by using PT as the film-forming material and ascorbic acid as the reducing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), and X-ray diffraction (XRD) spectroscopy analysis were used to characterise the newly synthesised materials. PT-rGO-PtPd NCs present a synergistic effect not only to increase the active surface area to bio-capture more targets, but also to exhibit electrocatalytic efficiency to catalyze the decomposition of hydrogen peroxide (H2O2). A sensitive layer is formed by pyranose oxidase (PROD) attached to the surface of PT-rGO-PtPd NC/SPCE. In the presence of 1,5-AG, PROD catalyzes the oxidization of 1,5-AG to generate 1,5-anhydrofuctose (1,5-AF) and H2O2 which can be decomposed into H2O under the synergistic catalysis of PT-rGO-PtPd NCs. The redox reaction between PT and its oxidative product (quinones, PTox) can be enhanced simultaneously by PT-rGO-PtPd NCs, and the current signal was recorded by the differential pulse voltammetry (DPV) method. Under optimal conditions, our biosensor shows a wide range (0.1-2.0 mg/mL) for 1,5-AG detection with a detection limit of 30 µg/mL (S/N = 3). Moreover, our electrochemical biosensor exhibits acceptable applicability with recoveries from 99.80 to 106.80%. In summary, our study provides an electrochemical method for the determination of 1,5-AG with simple procedures, lower costs, good reproducibility, and acceptable stability.

5.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794881

RESUMO

Tannins derived from natural plant sources are known to provide many health benefits to humans and animals. Among the various tannins, those derived from persimmon (Diospyros kaki) have exhibited strong inactivating effects against pathogens that induce diseases in humans. However, few studies have focused on the antiviral effects of persimmon tannin against pathogen-induced diseases in animals. In this study, we investigated the antiviral effects of persimmon tannin against various avian influenza viruses revealing that tannin at a concentration of 1.0 mg ml-1 reduced viral infectivity in >6.0-log scale against all tested avian influenza viruses. In addition, this persimmon tannin concentration effectively inhibited the receptor binding and membrane fusion abilities of viral hemagglutinin (HA), which play important roles in avian influenza virus infection. These results suggest that persimmon tannin inactivates the HA of avian influenza viruses and reduces their infectivity. Persimmon tannin is a safer natural substance than the currently used chemical compound related to antiviral substance. When inactivation of the viruses which are present in environmental water such as roosting water of wild birds will be needed, persimmon tannin is expected to become an antiviral resource that may prevent the spread of several avian influenza virus subtypes.


Assuntos
Diospyros , Influenza Aviária , Orthomyxoviridae , Humanos , Animais , Taninos/farmacologia , Diospyros/química , Antivirais/farmacologia
6.
Int J Biol Macromol ; 219: 886-896, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961556

RESUMO

Herein, a magnetic MXenes based composite (Fe3O4@Ti3C2-NH2-PT) was constructed by loading Fe3O4 nano-particles into the interlamellar spacing of persimmon tannin-functionalized Ti3C2-NH2. The structure, morphology and physicochemical properties of the as-prepared adsorbents were probed by advanced spectroscopy techniques, while the impact of various experimental conditions like pH values, amount of adsorbent and contact time on the removal trend were examined by batch experiments. The elimination results revealed that Fe3O4@Ti3C2-NH2-PT could be applied in a wide range of initial concentrations, and exhibited outstanding removal efficiency for U(VI) (104.9 mg/g, pH = 5.0) and Cr(VI) (83.8 mg/g, pH = 2.0). Meanwhile, the adsorption process was described well with the Langmuir isotherm and Pseudo-second-order kinetics models, which indicated that the monolayer chemical adsorption occurred during elimination of the two contaminants. The spectral analysis results manifested that elimination of U(VI) followed an inner-sphere configuration, whereas uptake of Cr(VI) was determined by electrostatic interaction and adsorption-reduction process. This work opened a new opportunity in designing MXenes based adsorbents in the application for environmental remediation.


Assuntos
Diospyros , Poluentes Químicos da Água , Adsorção , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Taninos , Poluentes Químicos da Água/química
7.
Food Chem ; 387: 132913, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421646

RESUMO

To answer which is the key component caused the alterations of gluten in the presence of persimmon tannin (PT), the changes on physical properties, morphology, subunits coposition and cross-linking types of glutenin and gliadin were investigated. The results showed that compared with gliadin, glutenin was more sensitive to PT due to the greater changes in the thermal stability, network structure and aggregation behavior. This might be explained by the remarkable decreases in soluble subunits content, free sulfhydryl groups (SH), disulfide bonds (SS) and free amino groups (-NH2) cross-linking of glutenin after 8% of PT addition, as well as the varying degree in subunits composition. Therefore, glutenin played a more important role in the changes in the properties and network structure of gluten induced by PT than gliadin. Our work provided a guidance for the incorporation of phenolic compounds in wheat flour-based products.


Assuntos
Diospyros , Gliadina , Farinha , Gliadina/química , Glutens/química , Taninos , Triticum/química
8.
Chemosphere ; 287(Pt 3): 132199, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555582

RESUMO

Herein, using dialdehyde waste paper (DAWP) as a cross-linking agent to immobilize persimmon tannin (PT) was first used to remove the U(VI) and Cr(VI) via the "waste control by waste" concept. The microscopic and macroscopic surface properties of the as-prepared adsorbent was characterized by the advanced characterization techniques. Factors that affected the elimination process such as variable pH, coexistence ions and equilibrium time were investigated by batch techniques. The results showed that the maximal removal capacities of U(VI) and Cr(VI) on DAWP-PT were 242.3 mg/g (pH = 6.0) and 178.7 mg/g (pH = 2.0) at 298 K, which exhibited competitiveness with most of the reported solid materials. Meanwhile, adsorption data were fitted perfectly to the Langmuir and Pseudo-second-order equations, which indicated that the monolayer and homogenous chemisorption dominated the removal process. The SEM-EDX, DFT and XPS analysis conformed that adsorption of U(VI) was mainly via surface complexation, while the elimination of Cr(VI) was a redox reaction process, and about 65.33% of Cr(III) and 34.67% of Cr(VI) co-existed onto the surface of DAWP-PT. Thus, this study would provide a high-efficiency and low-cost adsorbent for radionuclide and heavy metal treatment.


Assuntos
Diospyros , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Taninos , Poluentes Químicos da Água/análise
9.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614657

RESUMO

Antioxidants are molecules that can prevent the harmful effects of oxygen, help capture and neutralize free radicals, and thus eliminate the damage of free radicals to the human body. Persimmon tannin (PT) has excellent antioxidant activity, which is closely related to its molecular structure. We report here a comparative study of four characteristic structural units from PT (epicatechin gallate (ECG), epigallocatechin gallate (EGCG), A-type linked ECG dimer (A-ECG dimer), A-type linked EGCG dimer (A-EGCG dimer)) to explore the structure-activity relationship by using the density functional theory. Based on the antioxidation mechanism of hydrogen atom transfer, the most favorable active site for each molecule exerts antioxidant activity is determined. The structural parameters, molecular electrostatic potential, and frontier molecular orbital indicate that the key active sites are located on the phenolic hydroxyl group of the B ring for ECG and EGCG monomers, and the key active sites of the two dimers are located on the phenolic hydroxyl groups of the A and D' rings. The natural bond orbital and bond dissociation energy of the phenolic hydroxyl hydrogen atom show that the C11-OH in the ECG monomer and the C12-OH in the EGCG monomer are the most preferential sites, respectively. The most active site of the two A-linked dimers is likely located on the D' ring C20' phenolic hydroxyl group. Based on computational analysis of quantum chemical parameters, the A-ECG dimer is a more potent antioxidant than the A-EGCG dimer, ECG, and EGCG. This computational analysis provides the structure-activity relationship of the four characteristic units which will contribute to the development of the application of PT antioxidants in the future.

10.
J Cosmet Dermatol ; 20(8): 2648-2656, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33480158

RESUMO

BACKGROUND: In daily life, excessive exposure to ultraviolet light can lead to pigmentation. AIMS: This study is to determine the mechanism of persimmon tannin extract in inhibiting pigmentation, to investigate whether the effect of persimmon tannin extract is superior to that of arbutin, and to detect the optimal concentration. METHODS: In this study, the guinea pig pigmentation model was established by ultraviolet B (UVB) irradiation. With arbutin as a positive control, Masson-Fontana silver staining was used to observe the effects of persimmon tannin extract on melanin distribution in guinea pigs' skin tissue. Then, the tyrosinase activity was measured, and an Enzyme-linked immunosorbent assay was used to investigate the contents of antioxidant enzymes, inflammatory factors, and signaling pathway inhibitors in guinea pigs' skin tissue. RESULTS: The results showed that compared with the model group, superoxide dismutase, catalase, glutathione peroxidase, DKK1 content of Wnt/-catenin signaling pathway inhibitors levels, and inhibitory tyrosinase activity were increased by 24.3%, 33.3%, 59.3%, 36.81%, and 17.16%, respectively. Meanwhile, the interleukin-6 and interleukin-8 expression were reduced by approximately 22.2% and 54%. The results also showed that persimmon tannin extract could significantly reduce melanin density. The differences in experimental results were statistically significant (P < .01). CONCLUSIONS: Compared with the arbutin group, the medium-dose group (persimmon tannin extract of 20%) had a more significant effect on inhibiting pigmentation. Persimmon tannin could serve as a promising agent for preventing skin pigmentation. It is expected to provide ideas for the development of deep-processed persimmon products related to functional foods and cosmetics.


Assuntos
Diospyros , Taninos , Animais , Cobaias , Melaninas , Extratos Vegetais/farmacologia , Pele , Pigmentação da Pele , Taninos/farmacologia , Raios Ultravioleta/efeitos adversos
11.
Chemosphere ; 264(Pt 1): 128469, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33022501

RESUMO

An efficient fibrous adsorbent (PANF-TETA-PT) was prepared via grafting triethylenetetramine (TETA) on polyacrylonitrile fiber (PANF), followed by persimmon tannin (PT) immobilizing. Detailed characterization certified that plenty amounts of amino and phenolic hydroxyl groups existed on the surface of PANF-TETA-PT, which would provide excellent active sites for Au(III) adsorption. The batch characteristic results found that the adsorption equilibrium data could be fitted well with Langmuir equation, while the obtained kinetic data were consistent with the Pseudo-second-order equation. The maximum equilibrium adsorption capacity of PANF-TETA-PT towards Au(III) (801.2 mg/g) was apparently superior than that of the reported adsorbents, and the competitive adsorption showed that PANF-TETA-PT had a good preference to adsorption Au(III) in spite of some coexisting pollutants. The characterization analysis of Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer spectrum (XRD) revealed that the electrostatic attraction and chelation dominated the uptake of Au(III) on PANF-TETA-PT, in which a part of loaded Au(III) was reduced to Au particles with the help of reductive functional groups. Thus, this adsorbent could be as a promising candidate to separation and preconcentration of Au(III) from wastewater.


Assuntos
Diospyros , Poluentes Químicos da Água , Resinas Acrílicas , Adsorção , Taninos
12.
Food Res Int ; 137: 109536, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233165

RESUMO

The effects of persimmon tannin (PT) on the texture, viscoelasticity, thermal stability, and morphology of gluten were studied and the underlying mechanisms were also explored. The results showed that PT increased the hardness and viscoelasticity but lowered the cohesiveness and extensibility of gluten in a dose-dependent manner. Additionally, PT increased the denaturation temperature and enthalpy of gluten, and induced the formation of gluten with compact structure. High concentration of PT (8%) significantly increased the hardness and viscoelasticity of gluten, and induced the formation of compact structure of gluten by disturbing the conformation of gluten, and interfering gluten cross-linking through decreasing disulfide bonds, free sulfydryl groups, and free amino groups. In contrast, low concentration (0.25%) of PT slightly altered the gluten properties and morphology. Our work extended the study on the supplementation of phenolic compounds in wheat flour-based products.


Assuntos
Diospyros , Farinha , Taninos , Glutens , Taninos/metabolismo , Triticum
13.
Mater Sci Eng C Mater Biol Appl ; 108: 110196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924020

RESUMO

With the rapid development of dye and textile industry, the pollution of dye wastewater has aroused widespread public concern due to the potential risk to human health. Therefore, it is of significance for the removal of dye pollutants from wastewater. In this work, a green and efficient bio-adsorbent, graphene oxide modified persimmon tannin (PT-GO), has been fabricated through glutaraldehyde crosslinking method for efficient adsorption of methylene blue (MB) from aqueous solutions. The prepared PT-GO bio-adsorbent was analyzed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectra (XPS) and Brunauer-Emmett-Teller (BET) analysis. The adsorption behavior of the PT-GO bio-adsorbent towards MB dye in a batch adsorption process was investigated. The maximum MB adsorption capacity achieved 256.58 mg g-1 with MB concentration of 35 mg L-1 at 323 K. The Freundlich equilibrium isotherm and the pseudo-second order model fit the adsorption behavior very well. Thermodynamics data revealed that the adsorption of MB onto PT-GO bio-adsorbent was feasible, spontaneous and endothermic. Redox reactions, electrostatic interactions and π-π interactions dominated the adsorption of MB onto PT-GO bio-adsorbent. In addition, the regeneration of the PT-GO was efficiently achieved and MB removal efficiency remained high (88.3%) after fifth cycles. All these results indicated that PT-GO bio-adsorbent could be a promising biomass adsorbent for the removal of organic dye contaminants with non-toxic, efficient and low cost.


Assuntos
Diospyros/química , Grafite/química , Azul de Metileno/química , Taninos/química , Purificação da Água , Adsorção
14.
Food Chem ; 309: 125692, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31670119

RESUMO

Persimmon tannin (PT) exhibits antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) isolated from retail pork. The involved molecular mechanisms were investigated for the first time using transcriptome and metabolome in this study. Results showed that subinhibitory concentration of PT (0.5 mg/ml) induced significant changes in MRSA at both transcriptional and metabolic levels, as 370 genes and 19 metabolites were differentially expressed. Bioinformatic analysis revealed that the varying genes and metabolites were mainly involved in pathways of membrane transport, amino acids, carbohydrate, and energy metabolism. The highlighted changes were those related to osmotic regulation, intracellular pH regulation, amino acid synthesis and metabolism, glycolysis, TCA cycle and iron metabolism, suggesting the multifaceted effects including cell membrane damage, amino acids limitation, energy metabolism disorder and iron deprivation induced by PT. The results provided insight into the anti-MRSA mechanism of PT, which is useful for PT's development and application in food safety.


Assuntos
Diospyros/química , Metaboloma/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Carne Vermelha/microbiologia , Taninos/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Diospyros/metabolismo , Metabolismo Energético/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Suínos
15.
Int J Biol Macromol ; 152: 1242-1251, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759026

RESUMO

A novel bio-adsorbent (DAVF-PT) was prepared by the introduction of persimmon tannin (PT) on the surface of viscose fiber (VF) through condensation reaction. The adsorbent was applied to the adsorption of Au(III) and Pd(II) from aqueous solution. Batch adsorption experiment found that the adsorption performance of DAVF-PT for Au(III) and Pd(II) was closely related to pH of solution, initial metal ion concentration as well as co-existing metal ions. The adsorption isotherms data of Au(III) and Pd(II) on DAVF-PT could be best explained by the Langmuir equation, and the fitted maximum adsorption amounts for Au(III) and Pd(II) were 535 mg/g and 214 mg/g, much higher than those similar adsorbents reported in the literatures. The thermodynamic study revealed that adsorption reaction was an endothermic, spontaneous and entropy increase process. Furthermore, the kinetics data of Au(III) and Pd(II) adsorption on DAVF-PT obeyed the Pseudo-second-order equation, indicating that the chemical adsorption was the mainly rate-limiting step. The EDS, XPS and XPD analysis confirmed that the gold and palladium ions were reduced to metallic state following adsorption, while the phenolic group was simultaneously converted into quinone group, indicating the potential use of this novel fiber-based adsorbent in the recovery of precious metal ions from wastewater.


Assuntos
Ouro/química , Paládio/química , Taninos/química , Adsorção , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Termodinâmica , Águas Residuárias/química , Poluentes Químicos da Água/química
16.
Int J Biol Macromol ; 132: 1193-1199, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974137

RESUMO

The effects of persimmon tannin (PT) on the physicochemical properties of maize starch with different amylose/amylopectin ratios were studied. The results showed that PT remarkably altered the physicochemical properties of the starch. And the effects were dependent both on the concentration of PT and the amylose/amylopectin ratios. DSC analysis showed that PT slightly increased the gelatinization temperature of low-amylose (LAC) and intermediate-amylose maize starch (IAC), whereas the Tc and Tp of high-amylose maize starch (HAC) were decreased strikingly. XRD and SEM analysis demonstrated that PT retarded the retrogradation of the three kinds of starch. The hardness and adhesiveness values of the three kinds of starch decreased with increasing the PT concentration. The cohesiveness and springiness value of LAC starch gel were decreased by PT, whereas that of HAC starch gel were slightly increased by PT addition. Dynamic rheology analysis demonstrated that PT improved the viscoelasticity of LAC paste, but lowered the viscoelasticity of HAC and IAC paste. Taken together, PT had greater effects on the physicochemical properties for HAC starch than on LAC, revealing that PT has stronger interaction with amylose than with amylopectin. Our results indicated that PT might have a potential use in improving the quality of starch-based food.


Assuntos
Amilopectina/química , Amilose/química , Fenômenos Químicos , Diospyros/química , Taninos/química , Zea mays/química , Amilopectina/análise , Amilose/análise , Reologia
17.
Environ Technol ; 40(1): 112-124, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28911271

RESUMO

Lead (Pb) pollution has triggered a great threat to ecological system as well as public health due to its highly toxic and mutagenic properties. In this study, chitosan surface modified persimmon tannin (PT-CS) biomass composite as an environmental-friendly bioadsorbent for highly efficient removal of Pb(II) from aqueous solutions was investigated. Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy and Zeta potential were used to elucidate the adsorption mechanism. Combining oxidation reaction, electrostatic interaction and chelation reaction, PT-CS exhibited fine adsorption to Pb(II). The maximum adsorption capacity was 179.3 mg/g. Equilibrium isotherm for the adsorption of Pb(II) was analyzed by the Langmuir, Freundlich and Temkin models, and the Langmuir isotherm (R2 > 0.99) was the best. The pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were used to analyze the kinetic data of the adsorption process and the pseudo-second-order kinetic (Rs2 > 0.98) model was fitted well. Moreover, thermodynamic parameters including ΔG0 < 0, ΔH0 (150.57 KJ/mol) > 0 and ΔS0 (456.13 J/mol K) > 0 showed that the process of Pb(II) adsorption by PT-CS was spontaneous and endothermic. All these results illustrated that PT-CS would be a promising and low-cost alternative bioadsorbent of Pb(II) in wastewater treatment.


Assuntos
Quitosana , Diospyros , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Taninos , Termodinâmica
18.
J Hazard Mater ; 364: 780-790, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447562

RESUMO

In this paper, a new core-shell nanostructured magnetic bio-based composite was prepared by immobilizing persimmon tannin (PT) onto Fe3O4@SiO2 microspheres, and the as designed Fe3O4@SiO2@PT was utilized for adsorptive recovery of Au(III) and Pd(II). The preparation, morphology, composition and magnetic property of Fe3O4@SiO2@PT were characterized. Adsorption parameters of Fe3O4@SiO2@PT towards Au(III) and Pd(II) including initial pH, reaction time, initial concentration of metal ions, effect of acidity and interference of coexisting metal ions were investigated. It is sufficiently confirmed that silica was coated on Fe3O4 and persimmon tannin was immobilized on aminated Fe3O4@SiO2. The thickness of silica and loaded persimmon tannin are around 18 nm and 14 nm, respectively. With only 1.00 wt% of persimmon tannin, however, the maximum adsorption capacities of Fe3O4@SiO2@PT for Au(III) and Pd(II) were as high as 917.43 and 196.46 mg·g-1, respectively. In addition, after adsorption of Au(III) and Pd(II), the magnetization saturation values (Ms) of Fe3O4@SiO2@PT were high enough to guarantee efficient magnetic seperation. Metallic gold could be facilely recovered from wastewaters containing Au(III).

19.
Mater Sci Eng C Mater Biol Appl ; 92: 590-598, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184785

RESUMO

Hydrogen peroxide (H2O2) is one of the most universal and essential ingredients in distinct biological tissues. Herein, a novel non-enzymatic sensor based on reduction graphene oxide-persimmon tannin­platinum nanocomposite (RGO-PT-Pt) was exploited for H2O2 detection. RGO-PT-Pt nanocomposite was prepared by reduction procedure with ascorbic acid as reducing agent and characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-vis) and Fourier infrared spectroscopy (FT-IR). Taking advantage of high electro-catalytic efficiency of Pt nanoparticles, high electronic conductivity and large surface area of RGO, and significant adsorption ability of PT on metal ions and its prevention of agglomeration to promote RGO dispersion, RGO-PT-Pt nanocomposite revealed better catalytic ability towards H2O2 via a synergistic effect. Under the optimal conditions, the RGO-PT-Pt non-enzymatic biosensor exhibited outstanding electrocatalytic activity towards H2O2 reduction. The amperometric response demonstrated a linear relationship with H2O2 concentration from 1.0 to100 µM with the correlation coefficient of 0.9931. The limit of detection was 0.26 µM (S/N = 3) and the response time was 3 s. Furthermore, the fabricated sensor exhibited a practical applicability in the quantification of H2O2 in human serum samples with an excellent recovery rate. Due to excellent performance such as fast response time, low detection limit, high stability and selectivity, the RGO-PT-Pt non-enzymatic biosensor has potential application in clinical diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Diospyros/química , Grafite/química , Peróxido de Hidrogênio/análise , Nanocompostos/química , Platina/química , Taninos/química , Oxirredução
20.
J Agric Food Chem ; 66(24): 6013-6021, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29806464

RESUMO

Pancreatic lipase (PL) is a critical enzyme associated with hyperlipidemia and obesity. A previous study of ours suggested that persimmon tannin (PT) was the main component accounting for the antihyperlipidemic effects of persimmon fruits, but the underlying mechanisms were unclear. In this present study, the inhibitory effect of PT on PL was studied and the possible mechanisms were evaluated by fluorescence spectroscopy, circular dichroism (CD) spectra, isothermal titration calorimetry (ITC), and molecular docking. PT had a high affinity to PL and inhibited the activity of PL with the half maximal inhibitory concertation (IC50) value of 0.44 mg/mL in a noncompetitive way. Furthermore, molecular docking revealed that the hydrogen bonding and π-π stacking was mainly responsible for the interaction. The strong inhibition of PT on PL in the gastrointestinal tract might be one mechanism for its lipid-lowering effect.


Assuntos
Diospyros/química , Inibidores Enzimáticos/química , Lipase/antagonistas & inibidores , Extratos Vegetais/química , Taninos/química , Animais , Cinética , Lipase/química , Simulação de Acoplamento Molecular , Pâncreas/enzimologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA