Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
1.
J Environ Sci (China) ; 150: 545-555, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306428

RESUMO

Persulfate (PS) is a widely used oxidant for the chemical oxidation of organic pollutants. The accurate measurement of PS concentration is crucial for the practical application process. The iodometry is the most recommended method for PS determination, and its principle is based on the redox reaction between S2O82- and iodide ions. However, hydrogen peroxide (H2O2), an important intermediate product in the process of PS use, often leads to abnormally high determination concentrations of PS. Given this, a novel method was developed for the determination of PS based on the principle of the oxidation of chloride ion (Cl-). The concentration of PS is calculated according to the consumption of Cl- concentration, which is not disturbed by H2O2. The optimized test conditions were explored as: C(H+) = 2 mol/L, T = 80℃, C(Cl-):C(PS) = 4:1 and t = 30 min. Under the optimized conditions, the limit of detection and the limit of quantification of PS concentration determined by this method were 0.26 and 0.85 g/L, respectively. And the linear range of the PS determination was 1-100 g/L with an error of 0.53%-12.06%. The spike recovery rate for determining PS concentration in the actual wastewater ranged from 94.07%-109.52%. Interfering factors such as H2O2, Fe3+, MnO2 and natural organic matter had almost no effect on the results. This method could not only accurately determine the concentration of PS in industrial wastewater, but also determine the purity of PS industrial products.


Assuntos
Cloretos , Peróxido de Hidrogênio , Oxirredução , Sulfatos , Poluentes Químicos da Água , Sulfatos/análise , Sulfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cloretos/análise , Cloretos/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Águas Residuárias/química
2.
J Environ Sci (China) ; 150: 704-718, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306441

RESUMO

Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated Ni3S2 nanosheets in-situ grown on Ni foam (Fe-Ni3S2@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water. A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni3S2 nanosheets on the Ni foam. Fe-Ni3S2@NF possessed outstanding activity and durability in activating PMS, as it effectively facilitated electron transfer from organic pollutants to PMS. Fe-Ni3S2@NF initially supplied electrons to PMS, causing the catalyst to undergo oxidation, and subsequently accepted electrons from organic compounds, returning to its initial state. The introduction of Fe into the Ni3S2 lattice enhanced electrical conductivity, promoting mediated electron transfer between PMS and organic compounds. The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni3S2, accelerating pollutant abatement due to its porous structure and high conductivity. Furthermore, its monolithic nature simplified the catalyst recycling process. A continuous flow packed-bed reactor by encapsulating Fe-Ni3S2@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h, highlighting its immense potential for practical environmental remediation. This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes.


Assuntos
Ferro , Níquel , Oxirredução , Peróxidos , Poluentes Químicos da Água , Níquel/química , Ferro/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Nanoestruturas/química , Transporte de Elétrons
3.
Talanta ; 282: 126974, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353218

RESUMO

Total organic carbon (TOC) is a crucial indicator of organic pollutants, widely used in environmental water quality monitoring and risk assessment. Conventional TOC detection methods often require high temperatures, complex equipment, and inefficient oxidation processes, limiting their field application due to time consumption, intricate operations, and limited sensitivity. Therefore, we developed a novel approach for TOC measurement using catalytic oxidation vapor generation coupled with miniaturized point discharge optical emission spectrometry (µPD-OES). This method employs urchin-like Co3O4 microspheres to convert organic pollutants to carbon dioxide during persulfate catalytic oxidation, followed by collection and quantification via carbon atomic emission line (λ = 193.0 nm). Standard or sample solutions were acidified with phosphoric acid and purged with Ar before quantification. Under optimal conditions, the proposed method achieved a detection limit of 0.01 mg L-1, offering precision (RSD, n = 11) better than 3.7 %. The feasibility of the system was tested using a certified reference material (GBW(E)082053) and environmental water samples, achieving satisfactory recoveries (98-102 %). This method provides high oxidation efficiency, sensitivity, and accuracy, while also reducing the demand for expensive and bulky instruments and minimizing energy consumption, making it suitable for rapid, sensitive field analysis of TOC.

4.
Environ Pollut ; 363(Pt 1): 125072, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368621

RESUMO

Extracellular antibiotic resistance gene (eARG) has emerged as a global crisis in recent years, yet commonly used disinfectants have proven ineffective for their elimination. Seeking to enhance the degradation efficiency of eARG, this study explored the potential of carbon nanotubes-activated persulfate (CNTs + PS) system as a novel method for eradicating eARG. Our findings demonstrated that CNTs + PS effectively disrupted the intact structure of eARG, inhibited their genetic replication and horizontal transfer capability, achieving remarkable degradation of eARG contamination. Further experiments revealed that 1O2 played a predominant role in eARG degradation, while electron transfer played minor roles in the degradation process. The carbonyl groups served as the primary sites for activating PS to generate 1O2. CNTs can enhance the efficiency of electron transfer from eARG to PS. Moreover, the degradation efficacy of eARG by CNTs + PS was influenced by various factors including the dosage ratio between CNTs and PS, initial concentrations of eARG, pH values, inorganic anions and humic substances and water matrix. Reusability experiment demonstrated that CNTs + PS exhibited stable degradation performance after multiple uses. These findings offer a new perspective for the efficient degradation of eARG in environmental remediation.

5.
Water Res ; 268(Pt A): 122587, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39405630

RESUMO

The degradation of haloacetic acids (HAAs) in aqueous environments poses a challenge due to their oxidative resistance. Given that HAAs are highly carcinogenic disinfection byproducts, it is imperative to develop effective degradation methods to reduce their potential health risk. In this study, we found that only 27.2% of 200 µM trichloroacetic acid (TCA) was removed in the UV-activated persulfate (PS) system after 2 h, while complete removal was achieved with the addition of 15 mM formic acid (FA). The main products of TCA degradation were dichloroacetic acid and monochloroacetic acid. Results from free radical quenching experiments and electron paramagnetic resonance spectroscopy analyses indicated that reductive carbon dioxide radical (CO2•-) was the main active species responsible for TCA reduction. Oxidative radicals (i.e., SO4•- and •OH) generated from PS activation reacted with FA to form CO2•-, efficiently degrading TCA. The effects of PS and FA concentrations, solution pH, anions (e.g., Cl-, SO42-, and HCO3-), and small organic molecules (e.g., methanol, ethanol, and acetic acid) on degradation efficiency were examined. Overall, this study proposes a simple and efficient method to improve the degradation efficiency of HAAs in the UV/PS system and provides new insights into the advanced reduction processes used for water treatments.

6.
Chemosphere ; 366: 143440, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369747

RESUMO

Soil contamination with hazardous substances like phenol poses significant environmental and health risks. In situ soil mixing can be a promising technological solution to this challenge. A persulfate and sulfidated zero-valent iron (S-ZVIbm) system for remediating contaminated soil was developed and tested to be suited to in situ soil mixing. S-ZVIbm was synthesized using a ball mill process, and the optimal sulfur to iron molar ratio for effectively removing phenol from soil removal without pyrophoric risks was 0.12. Soil slurry experiments were performed, and the best phenol oxidation results (high stoichiometric efficiency and sustained oxidation after mixing) were achieved at a persulfate to S-ZVIbm molar ratio of 2:1 and a persulfate to phenol molar ratio of 8:1. A high organic matter content of the silty clay fraction of the soil strongly suppressed persulfate activation, so suppressed phenol removal and increased persulfate consumption. Electron spin resonance and radical scavenging tests confirmed that hydroxyl and sulfate radicals were present during the degradation of phenol. While sulfate radicals predominantly facilitated degradation in the soil, both sulfate and hydroxyl radicals were crucial in the aqueous phase in the absence of soil organic matter. In situ soil mixing simulation tests indicated that the persulfate and S-ZVIbm doses and the mixing rate and duration strongly affected the efficacy of the system, and the optimal conditions for phenol removal were determined. The results indicated that the persulfate/S-ZVIbm system could be tuned to achieve sustained persulfate activation and to remediate contaminated soil employing in situ soil mixing technique.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39379657

RESUMO

The accurate and rapid detection of persulfate concentration is important for environmental decontamination and human health protection. In this work, a novel self-powered electrochemical sensor for the sensitive monitoring of persulfate was developed, which utilized cobalt tetroxide (Co3O4@CC) or tin-doped cobalt tetroxide (SnxCo3-xO4@CC) cathode as the sensing element and anode with electrogenic microorganisms as the power supplier. The Co3O4@CC and SnxCo3-xO4@CC electrodes were fabricated by in situ growing nanostructured Co3O4 or SnxCo3-xO4 catalysts on carbon cloth. Electrochemical tests revealed that these electrodes exhibited excellent catalytic reduction performance toward persulfate because of the synergistic catalysis by Co3O4 and electrode electrons, well-exposed Co2+/Co3+ catalytic sites, and high electron transfer efficiency. Tin doping could enhance the catalytic persulfate reduction by improving the conductivity and electron transfer of the Co3O4 catalyst. The electrode prepared at a hydrothermal temperature of 90 °C and a tin dosage of 0.286 g·cm-2 achieved the highest persulfate reduction activity under pH 7. The sensing properties of the self-powered sensors toward persulfate were explored in detail. Results showed that under the optimal external load of 300 Ω, the proposed sensor could display a broad detection range of 0 to 1500 µmol L-1 K2S2O8 with sensitivities of 1.13 and 0.12 µA µmol-1 L, a detection limit of 1.11 µmol L-1 (S/N = 3), and a fast response time within 30 s. The sensors also presented satisfactory reproducibility and selectivity during the detection of persulfate. The proposed sensor will provide a new approach for sensitive, on-site, and real-time monitoring of persulfate for a wide range of applications.

8.
Polymers (Basel) ; 16(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408495

RESUMO

Thermosensitive polymers P1-P6 of N-isopropylacrylamide (PNIPA) and poly(ethylene glycol) dimethacrylates (PEGDMAs), av. Mn 550-20,000, were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was monitored by the conductivity. The hydrodynamic diameters (HDs) and the polydispersity indexes (PDIs) of the aqueous dispersion of P1-P6 in the 18-45 °C range, assessed via dynamic light scattering (DLS), were at 18° as follows (nm): 73.95 ± 19.51 (PDI 0.57 ± 0.08), 74.62 ± 0.76 (PDI 0.56 ± 0,01), 69.45 ± 1.47 (PDI 0.57 ± 0.03), 196.2 ± 2.50 (PDI 0.53 ± 0.04), 194.30 ± 3.36 (PDI 0.56 ± 0.04), 81.99 ± 0.53 (PDI 0.56 ± 0.01), 76.87 ± 0.30 (PDI 0.54 ± 0.01), respectively. The electrophoretic mobilities estimated the zeta potential (ZP) in the 18-45 °C range, and at 18 °C they were as follows (mV): -2.57 ± 0.10, -4.32 ± 0.67, -5.34 ± 0.95, --3.02 ± 0.76, -4.71 ± 2.69, -2.30 ± 0.36, -2.86 ± 0.42 for polymer dispersion P1-P6. The polymers were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TG/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). The length of the cross-linker chain influences the physicochemical properties of the obtained polymers.

9.
Environ Sci Pollut Res Int ; 31(45): 56565-56577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39276286

RESUMO

The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.


Assuntos
Grafite , Dióxido de Silício , Grafite/química , Dióxido de Silício/química , Catálise , Poluentes Químicos da Água/química , Oxirredução , Sulfatos/química , Corantes/química
10.
Environ Sci Pollut Res Int ; 31(42): 55022-55034, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222229

RESUMO

The technical feasibility of advanced oxidation process, in particular persulfate (PS) oxidation followed by struvite precipitation for landfill leachate treatment and nutrient recovery has been depicted in the current study. Furthermore, the impact of activation of PS with thermal and ultraviolet (UV) irradiation techniques on COD removal efficiency is also investigated. A maximum COD removal efficiency of 96% is accomplished at 65 °C together with supply of UV irradiation. The impact of persulfate dose, pH, and PS/65 °C/UV system on COD and biodegradability is also illustrated in the current study. Additionally, decomposition rate constant values are also ascertained in the present study. Afterwards, nutrient recovery using struvite precipitation is carried out for sustainable utilization of resources. Preliminary treatment of leachate with PS/65 °C/UV system is greatly conducive to recovering high quality struvite crystals. Besides, 94.9%, 83.5%, and 91.3% of PO43- - P, NH4+ - N, and Mg2+ recovery efficiency attained respectively at pH 9.5 and 1.2:1:1 molar ratio of Mg2+: NH4+ - N: PO43- - P. Additionally, all the nutrient recovery studies are validated using chemical equilibrium model Visual MINTEQ. Later, bioavailable fraction of PO43- - P in the recovered struvite is also investigated for utilization as fertilizer. The presence of Cu and Zn in the recovered struvite precipitate enhanced its economic value as a fertilizer. Since Cu and Zn are vital micronutrients for growth of plants. The low soluble values of recovered struvite precipitate confirmed its utilization as slow releasing fertilizer.


Assuntos
Oxirredução , Estruvita , Poluentes Químicos da Água , Estruvita/química , Poluentes Químicos da Água/química , Nutrientes
11.
Chemosphere ; 364: 143245, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233302

RESUMO

This study presents novel composites of biochar (BC) derived from spinach stalks and zinc oxide (ZnO) synthesized from water hyacinth to be used for the first time in a hybrid system for activating persulfate (PS) with photocatalysis for the degradation of bromothymol blue (BTB) dye. The BC/ZnO composites were characterized using innovative techniques. BC/ZnO (2:1) showed the highest photocatalytic performance and BC/ZnO (2:1)@(PS + light) system attained BTB degradation efficiency of 89.47% within 120 min. The optimum operating parameters were determined as an initial BTB concentration of 17.1 mg/L, a catalyst dosage of 0.7 g/L, and a persulfate initial concentration of 8.878 mM, achieving a BTB removal efficiency of 99.34%. The catalyst showed excellent stability over five consecutive runs. Sulfate radicals were the predominant radicals involved in the degradation of BTB. BC/ZnO (2:1)@(PS + light) system could degrade 88.52%, 84.64%, 81.5%, and 77.53% of methylene blue, methyl red, methyl orange, and Congo red, respectively. Further, the BC/ZnO (2:1)@(PS + light) system effectively activated PS to eliminate 97.49% of BTB and 85.12% of dissolved organic carbon in real industrial effluents from the textile industry. The proposed degradation system has the potential to efficiently purify industrial effluents which facilitates the large-scale application of this technique.


Assuntos
Carvão Vegetal , Corantes , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Carvão Vegetal/química , Catálise , Corantes/química , Poluentes Químicos da Água/química , Sulfatos/química , Fotólise , Spinacia oleracea , Compostos Azo/química , Alimentos , Química Verde/métodos , Perda e Desperdício de Alimentos
12.
Chemosphere ; 364: 143262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236913

RESUMO

This study explored Mason pine-derived hydrochar (MPHC) as an effective adsorbent and persulfate (PS) activator for degrading bisphenol A (BPA). Increasing MPHC dosage from 0.25 to 2.0 g L-1 raised BPA removal from 42% to 87%. Similarly, at the same MPHC dosage range and fixed PS concentration (8 mM), BPA removal by MPHC/PS increased from 66% to 91%. Additionally, at a fixed MPHC dosage (1.0 g L-1), higher PS concentrations (2-32 mM) resulted in an overall BPA removal increase from 78% to 99%. The optimal pH for BPA removal by MPHC was at pH 3, while for MPHC/PS was at pH 9. BPA degradation by MPHC was optimal at pH 3, whereas MPHC/PS was at pH 3 and pH 9. Additionally, pH 7 favored BPA adsorption for both MPHC and MPHC/PS. The study also considered the influence of coexisting anions and humic acid (HA). PO43- and NO3- influence adsorption on MPHC, but these anions' effect on MPHC/PS is limited. Furthermore, the existence of HA had minimal influence on BPA removal by MPHC/PS. The contributions of different reactive species by MPHC for BPA degradation are as follows: electron-hole (h+) 2%, singlet oxygen (1O2) 7%, superoxide radicals (O2•-) 13%, electron (e-) 2%, hydroxyl radical (•OH) 3%, whereas the remaining 48% removal was the contribution of adsorption. For MPHC/PS, adsorption accounted for 39 %, more reactive species were involved in degradation, and the donations are (h+) 3%, sulfate radicals (SO4•-) 3%, (1O2) 19%, (O2•-) 15%, (e-) 2%, and (•OH) 2%. Additionally, the performance of MPHC remains stable after three operational cycles. The preparation cost of MPHC is 3.01 € kg-1. These results highlight the potential of MPHC as an environmentally friendly material for activating PS and removing organic pollutants, suggesting its promising application in future environmental remediation efforts.


Assuntos
Compostos Benzidrílicos , Fenóis , Sulfatos , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Sulfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Substâncias Húmicas , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos
13.
Chemosphere ; 364: 143291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243904

RESUMO

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Assuntos
Benzo(a)pireno , Recuperação e Remediação Ambiental , Ferro , Poluentes do Solo , Solo , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Benzo(a)pireno/química , Benzo(a)pireno/análise , Ferro/química , Solo/química , Oxirredução , Catálise
14.
Environ Pollut ; 362: 124924, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278557

RESUMO

Ferryl ions (Fe(IV)) are often thought to play an important role in iron-based advanced oxidation processes (AOPs), and their presence is typically inferred through the unique pathway of methyl phenyl sulfoxide (PMSO) conversion to methyl phenyl sulfone (PMSO2). Here, we first employed probe method by degrading the mixed system containing PMSO, benzoic acid (BA), nitrobenzene (NB) to analyze the steady-state concentration of Fe (IV) in the iron-based heterogeneous persulfate reaction system. In addition, studies were conducted on the direct oxidation of PMSO by different oxidants under different pH conditions, and the results showed that peroxymonosulfate (PMS), sodium hypochlorite (NaClO) and sodium periodate (PI) can directly oxidize PMSO and convert it into PMSO2. Furthermore, the influence of different types of iron salts and biomass on the prepared iron-biochar (Fe-BC) for the activation of persulfate on degradation of PMSO and the formation of PMSO2 was also investigated. This study may provide new insights into the use of PMSO as a probe for the analysis of Fe(IV) in heterogeneous reaction systems.

15.
Environ Sci Pollut Res Int ; 31(43): 55636-55647, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240438

RESUMO

The existence of natural organic matter (NOM) causes many problems in drinking water treatment processes. The degradation of different fractions of NOM in drinking water was studied using the ultraviolet/persulfate (UV/PS) process. The NOM was separated into hydrophobic (HPO), transition hydrophilic (TPI) and hydrophilic (HPI) fractions by reverse osmosis and XAD series resins. The effects of degradation were evaluated by dissolved organic carbon (DOC), UV254, three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC), and trihalomethane formation potential (THMFP). The results showed that UV/PS process could remove the three fractions of DOC, UV254, as well as the fluorescent components humic acid-like (C1 and C2) and protein-like (C3). The maximum removal rates of DOC of HPO, TPI, and HPI fractions were 34.6%, 38.4%, and 73.9%, respectively, and the maximum removal rates of UV254 were 72.1%, 86.3%, and 86.8%, respectively. The removal rate of the three fluorescent components can reach 100%, and C3 is easier to remove than C1 and C2 under the low PS dosage conditions. The order of kinetic degradation rate constant of UV254 first-order reaction is HPI > TPI > HPO. The optimum pH conditions for the degradation of HPO, TPI, and HPI fractions were acidic, basic, and neutral, respectively. The specific THMFP of HPO was higher than that of TPI and HPI. The specific THMFP of HPO and TPI fractions increased with the increase of radiation time, while the HPI fraction showed the opposite trend. THMFP has different degrees of correlation with DOC, UV254, C1, and C2. This study can provide a theoretical basis for the selection of the UV/PS process for drinking water sources containing NOM with different characteristics.


Assuntos
Água Potável , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Substâncias Húmicas , Sulfatos/química
16.
J Hazard Mater ; 479: 135743, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236534

RESUMO

Direct current (DC) has promising potential for persulfate delivery and activation in heterogeneous site remediation, yet requires deeper understanding. Here, we investigated the efficiency of DC for persulfate delivery and activation and compared with alternating current (AC). While AC electric field only influenced persulfate fate by Joule heating effect, DC electric field induced electrokinetic migration of persulfate and contaminants, as well as promoted persulfate activation with Joule heating and electrochemical reactions. DC system achieved 95 % MCB removal which was 3.1 times of that in AC system using the same voltage input (60 V) with a velocity of 0.5 m/d. When the applied DC voltage increased from 20 V to 60 V (0.5-1.5 V/cm), persulfate activation pathway changed from electrode reactions to the coupled activation pathways of electrode, chemical and heat reactions, thus resulting in increasing MCB removal efficiency from 57 % (20 V) to 95 % (40 V and 60 V). The energy consumption with 40 V (11.6 kWh/g) was 2.6 times of that using 20 V (4.4 kWh/g), and dramatically increased to 11.7 times with 60 V (50.2 kWh/g). This study provides a new perspective on improving the efficiency of persulfate delivery and activation in heterogeneous sites remediation using DC-driven system.

17.
J Hazard Mater ; 480: 135946, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326144

RESUMO

A sequential reduction-oxidation process using silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) and persulfate for mineralizing recalcitrant compounds was developed, and the effects of the process on nitrobenzene were evaluated. This sequential process significantly enhanced contaminant mineralization, which could not be effectively achieved by reduction or oxidation alone. The nZVI@SiO2 rapidly reduced nitrobenzene to aniline, then the aniline concentration gradually decreased after persulfate had been added and initiated sequential oxidative degradation. The SiO2 coating on the nZVI@SiO2 limited outward mass transfer of reaction products and increased the efficiency with which nitrobenzene was converted into aniline. Slow release of Fe(II) caused by the coating caused persulfate activation and subsequent aniline oxidation to be more sustained and efficient than without the coating. The final nitrobenzene-aniline mineralization efficiency was higher for the nZVI@SiO2/persulfate system than the nZVI/persulfate system. The SiO2 coating of the nZVI@SiO2 particles was an excellent protective layer, protecting the particles from undesirable consumption through reactions with groundwater components. nZVI@SiO2 particle transformations during the sequential process were investigated, and the operating conditions were optimized to maximize the recalcitrant compound removal efficiency. The results indicated that nZVI@SiO2 and persulfate could be used to mineralize organic contaminants in groundwater through sequential reduction-oxidation.

18.
Environ Res ; 263(Pt 1): 119957, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307229

RESUMO

Surface sulfidation has been widely investigated to effectively enhance the utilization and selectivity of iron electrons for enhanced pollutant reduction. However, there is relatively less knowledge on whether sulfidation facilitates the catalytic oxidation process and the mechanism of enhancement. Therefore, in this study, the role of surface sulfidation in modulating the oxidant decomposition pathway and reactive oxygen species generation was investigated with the sulfidated zerovalent iron (S-ZVI) activated persulfate (PS) system. The results revealed that sulfur on the surface of S-ZVI not only facilitates PS activation to generate more SO4•-, but also acts as an essential in the dynamic equilibrium between SO4•- and •OH. Specifically, the S-ZVI surface sulfide first forms sulfur monomers during catalysis, which promotes electron transfer to accelerate Fe3+ to Fe2+ cycling, prompting the generation of more SO4•- also generates SO32-. Then, SO32- is further reacted with •OH to generate the [O--O-SO3-] intermediate of SO4•-, which leads to a dynamic equilibrium of SO4•- and •OH, mitigating the further conversion of SO4•- to •OH. These findings unveiled the dynamic variation of sulfur on the surface of S-ZVI during PS activation, elevating new insights for the sulfate radical-based efficient degradation.

19.
Environ Res ; 262(Pt 2): 119972, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260721

RESUMO

Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO2 and H2O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.

20.
Environ Sci Pollut Res Int ; 31(47): 57822-57831, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39292306

RESUMO

A synergistic photocatalytic system based on Fe-based perovskite with persulfate was constructed for alkali lignin (AL) degradation in pulp and paper wastewater. The degradation performance and mechanism on AL were carried out under ambient temperature and pressure, accompanied by visible light irradiation. The results showed that the synergistic photocatalytic system exhibited much better performance on AL degradation than the single catalytic system. The degradation efficiency reached 73.5% under the optimal conditions and was constant at around 65% over the pH range from 2 to 8. A significant escalation of the AL degradation was observed at pH 10, reaching 80.1%. The photogenerated holes, 1O2 and SO4-·, generated by the system were involved in the degradation, and the holes played a dominant role. During the degradation process, the efficient promotion of cleavage events in lignin methoxy, ß-O-4 bond, and benzene ring was observed. Consequently, the depolymerization process led to the generation of high-value compounds, namely p-hydroxybenzaldehyde and vanillin. Remarkably, the yields of the high-value compounds in the synergistic photocatalytic system were five times larger than those in the control. This study offered a viable method to activate persulfate for alkali lignin degradation and to achieve a mutually beneficial strategy for wastewater treatment and recycling.


Assuntos
Lignina , Papel , Águas Residuárias , Lignina/química , Águas Residuárias/química , Catálise , Titânio/química , Álcalis/química , Ferro/química , Óxidos/química , Compostos de Cálcio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA