Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Leukoc Biol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973235

RESUMO

Secondary hemophagocytic lymphohistiocytosis (sHLH) is a hyperinflammatory syndrome characterized by immune disorders. It is imperative to elucidate the immunophenotypic panorama and the interactions among these cells in patients. Human peripheral blood mononuclear cells were collected from healthy donors and sHLH patients and tested using multicolor flow cytometry. We used FlowSOM to explore and visualize the immunophenotypic characteristics of sHLH. By demonstrating the phenotypes of immune cells, we discovered that sHLH patients had significantly higher levels of CD56+ monocytes, higher levels of myeloid-derived suppressor cells, low-density neutrophil-to-T cell ratio, and higher heterogeneous T cell activation than healthy donors. However, natural killer cell cytotoxicity and function were impaired. We then assessed the correlations among 30 immune cell types and evaluated metabolic analysis. Our findings demonstrated polymorphonuclear myeloid-derived suppressor cells, CD56+ monocytes, and neutrophil-to-T cell ratio were elevated abnormally in sHLH patients, which may indicate an association with immune overactivation and inflammatory response. We are expected to confirm that they are involved in the occurrence of the disease through further in-depth research.

2.
Genome Biol ; 25(1): 198, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075536

RESUMO

Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Simulação por Computador , Genômica/métodos , Software , Biologia Computacional/métodos , Multiômica
3.
Hum Mov Sci ; 96: 103243, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870744

RESUMO

Mediolateral gait stability can be maintained by coordinating our foot placement with respect to the center-of-mass (CoM) kinematic state. Neurological impairments can reduce the degree of foot placement control. For individuals with such impairments, interventions that could improve foot placement control could thus contribute to improved gait stability. In this study we aimed to better understand two potential interventions, by investigating their effect in neurologically intact individuals. The degree of foot placement control can be quantified based on a foot placement model, in which the CoM position and velocity during swing predict subsequent foot placement. Previously, perturbing foot placement with a force-field resulted in an enhanced degree of foot placement control as an after-effect. Moreover, timed muscle vibration enhanced the degree of foot placement control whilst the vibration was applied. Here, we replicated these two findings and further investigated whether Q1) timed muscle vibration leads to an after-effect and Q2) whether combining timed muscle vibration with force-field perturbations leads to a larger after-effect, as compared to force-field perturbations only. In addition, we evaluated several potential contributors to the degree of foot placement control, by considering foot placement errors, CoM variability and the CoM position gain (ßpos) of the foot placement model, next to the R2 measure as the degree of foot placement control. Timed muscle vibration led to a higher degree of foot placement control as an after-effect (Q1). However, combining timed muscle vibration and force-field perturbations did not lead to a larger after-effect, as compared to following force-field perturbations only (Q2). Furthermore, we showed that the improved degree of foot placement control following force-field perturbations and during/following muscle vibration, did not reflect diminished foot placement errors. Rather, participants demonstrated a stronger active response (higher ßpos) as well as higher CoM variability.

4.
Environ Res ; 258: 119415, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906446

RESUMO

BACKGROUND: PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE: This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS: C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS: The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 µg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS: Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.

5.
Methods Mol Biol ; 2832: 3-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869784

RESUMO

Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.


Assuntos
Aclimatação , Transdução de Sinais , Estresse Fisiológico , Plantas/metabolismo , Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Cloroplastos/metabolismo , Fenômenos Fisiológicos Vegetais , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
6.
Brain Res Bull ; 212: 110972, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710310

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls. MATERIALS AND METHODS: TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons. RESULTS: Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50-160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220-560 ms; 190-420 ms). Patients showed a reduction of both early (50-110 ms) gamma increase and later (180-230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms. CONCLUSION: Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.


Assuntos
Excitabilidade Cortical , Eletroencefalografia , Potencial Evocado Motor , Córtex Motor , Esquizofrenia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Esquizofrenia/fisiopatologia , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Córtex Motor/fisiopatologia , Potencial Evocado Motor/fisiologia , Excitabilidade Cortical/fisiologia , Inibição Neural/fisiologia , Pessoa de Meia-Idade , Eletromiografia/métodos , Adulto Jovem
7.
J Kinesiol Exerc Sci ; 34(105): 11-22, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38770104

RESUMO

Background: Millions of people are affected yearly by "runner's knee" and osteoarthritis, which is thought to be related to impact force. Millions are also affected by chronic falling, who are usually both difficult to identify and train. While at first glance, these topics seem to be entirely disconnected, there appears to be a need for a device that would address both issues. This paper proposes and investigates the use of the Variable Stiffness Treadmill (VST) as a targeted training device for the different populations described above. Materials and Methods: The VST is the authors' unique robotic split-belt treadmill that can reduce the vertical ground stiffness of the left belt, while the right belt remains rigid. In this work, heart rate and energy expenditure are measured for healthy subjects in the challenging asymmetric environment created by the VST and compared to a traditional treadmill setting. Results: This study shows that this asymmetric environment results in an increase in heart rate and energy expenditure, an increase in activity in the muscles about the hip and knee, and a decrease in impact force at heel strike. Conclusions: Compliant environments, like those created on the VST, may be a beneficial tool as they can: reduce high-impact forces during running and walking, significantly engage the muscles surrounding the hip and knee allowing for targeted training and rehabilitation, and assist in identifying and training high fall-risk individuals.

8.
Neuropsychologia ; 199: 108906, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38740180

RESUMO

OBJECTIVE: The goal of this study was to use independent component analysis (ICA) of high-density electroencephalography (EEG) to investigate whether differences in audio-motor neural oscillations are related to nonword syllable repetition accuracy in a group of adults who stutter compared to typically fluent speakers. METHODS: EEG was recorded using 128 channels from 23 typically fluent speakers and 23 adults who stutter matched for age, sex, and handedness. EEG was recorded during delayed, 2 and 4 bilabial nonword syllable repetition conditions. Scalp-topography, dipole source estimates, and power spectral density (PSD) were computed for each independent component (IC) and used to cluster similar ICs across participants. Event-related spectral perturbations (ERSPs) were computed for each IC cluster to examine changes over time in the repetition conditions and to examine how dynamic changes in ERSPs are related to syllable repetition accuracy. RESULTS: Findings indicated significantly lower accuracy on a measure of percentage correct trials in the AWS group and for a normalized measure of syllable load performance across conditions. Analysis of ERSPs revealed significantly lower alpha/beta ERD in left and right µ ICs and in left and right posterior temporal lobe α ICs in AWS compared to TFS (CC p < 0.05). Pearson correlations with %CT for frequency across time showed strong relationships with accuracy (FWE<0.05) during maintenance in the TFS group and during execution in the AWS group. CONCLUSIONS: Findings implicate lower alpha/beta ERD (8-30 Hz) during syllable encoding over posterior temporal ICs and execution in left temporal/sensorimotor components. Strong correlations with accuracy and interindividual differences in ∼6-8 Hz ERSPs during execution implicate differences in motor and auditory-sensory monitoring during syllable sequence execution in AWS.


Assuntos
Eletroencefalografia , Gagueira , Humanos , Masculino , Feminino , Adulto , Gagueira/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade
9.
J Biomech ; 168: 112122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703516

RESUMO

As the recovery from gait perturbations is coordinatively complex and error-prone, people often adopt anticipatory strategies when the perturbation is expected. These anticipatory strategies act as a first line of defence against potential balance loss. Since age-related changes in the sensory and neuromotor systems could make the recovery from external perturbations more difficult, it is important to understand how older adults implement anticipatory strategies. Therefore, we exposed healthy young (N = 10, 22 ± 1.05 yrs.) and older adults (N = 10, 64.2 ± 6.07 yrs.) to simulated slips on a treadmill with consistent properties and assessed if the reliance on anticipatory control differed between groups. Results showed that for the unperturbed steps in between perturbations, step length decreased and the backward (BW) margin of stability (MOS) increased (i.e., enhanced dynamic stability against backward loss of balance) in the leg that triggered the slip, while step lengths increased and BW MOS decreased in the contralateral leg. This induced step length and BW MOS asymmetry was significantly larger for older adults. When exposed to a series of predictable slips, healthy older adults thus rely more heavily on anticipatory control to proactively accommodate the expected backward loss of balance.


Assuntos
Acidentes por Quedas , Envelhecimento , Caminhada , Humanos , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Acidentes por Quedas/prevenção & controle , Perna (Membro)/fisiologia , Antropometria , Caminhada/fisiologia , Envelhecimento/fisiologia
10.
Gerontology ; 70(7): 689-700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38657580

RESUMO

INTRODUCTION: An effective reactive step response to an unexpected balance loss is an important factor that determines if a fall will happen. We investigated reactive step strategies and kinematics of unsuccessful balance recovery responses that ended with falls in older adults. METHODS: We compared the strategies and kinematics of reactive stepping after a lateral loss of balance, i.e., perturbations, between 49 older female adults who were able to successfully recover from perturbations (perturbation-related non-fallers, PNFs) and 10 female older adults who failed to recover (perturbation-related fallers, PFs). In addition, we compared the successful versus unsuccessful recovery responses of PFs matched to perturbation magnitude. RESULTS: The kinematics of the first reactive step response were significantly different between PFs and PNFs, i.e., longer initiation time, step time, swing time, and time to peak swing-leg velocity, larger first-step length, and center-of-mass displacement. Incomplete crossover stepping and leg collision were significant causes of falls among PFs. Similar findings were found when we compared the successful versus unsuccessful recovery responses of PFs. CONCLUSIONS: The crossover step, which requires a complex coordinated leg movement, resulted in difficulty in controlling and decelerating the moving center of mass following a lateral perturbation, affecting the kinematics of the stepping response, leading to a fall.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Humanos , Equilíbrio Postural/fisiologia , Feminino , Idoso , Acidentes por Quedas/prevenção & controle , Fenômenos Biomecânicos , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia
11.
Sci Total Environ ; 930: 172612, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663602

RESUMO

Mangroves develop under environmental conditions and anthropogenic pressures whose impact on benthic meiofauna remains poorly understood. It is unclear how meiofauna communities are structured according to local sedimentary conditions. This study was designed to characterize the community structure of meiofauna and nematodes (dominant taxa) and the associated environmental forcings in intertidal mangrove sediments from Mayotte (Indo-West-Pacific), Martinique and Guadeloupe (Caribbean). Sediment cores were sampled at the end of the dry season at low tide on adult mangrove stands with similar immersion time. In each sediment layer, we analyzed redox potential, pH, porewater salinity, grain size, organic matter, metals, organic contaminants, prokaryotes and meiofauna. Our results show that sediments far from cities and agricultural fields trapped site-specific contaminants due to local water transport processes. Some metals, PAHs or pesticides exceeded toxicity thresholds in most of the studied stations, thus being harmful to benthic fauna. The sedimentary environment acts as a filter selecting specific meiofauna communities at station scale only in the Caribbean. In Mayotte, horizontal homogeneity contrasts with vertical heterogeneity of the sedimentary environment and the meiofauna. Nematode genera showed particular distribution patterns horizontally and vertically, suggesting the presence of sediment patches suitable for a restricted pool of genera on each island. Results in the Caribbean are consistent with nested diversity patterns due to environmental filtering. Conversely, horizontal homogeneity at Mayotte would reflect greater dispersal between stations or more spatially homogeneous anthropogenic pressures. The nematode genera present at depth may not be the most specialized, but the most versatile, capable of thriving in different conditions. Terschellingia and Daptonema showed contrasted responses to environmental forcing, likely due to their versatility, while Desmodora showed uniform responses between study areas, except when toxicity thresholds were exceeded. Our results emphasize that a given genus of nematode may respond differently to sedimentary conditions depending on sites.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Nematoides , Áreas Alagadas , Animais , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Região do Caribe , Guadalupe , Invertebrados
12.
Apoptosis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615303

RESUMO

Mycobacterium tuberculosis (Mtb) genome possesses a unique family called Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) gene family, exclusive to pathogenic mycobacterium. Some of these proteins are known to play role in virulence and immune response modulation, but many are still uncharacterized. This study investigated the role of C-terminal region of Rv1039c (PPE15) in inducing mitochondrial perturbations and macrophage apoptosis. Our in-silico studies revealed the disordered, coiled, and hydrophobic C-terminal region in Rv1039c has similarity with C-terminal of mitochondria-targeting pro-apoptotic host proteins. Wild type Rv1039c and C-terminal deleted Rv1039c (Rv1039c-/-Cterm) recombinant proteins were purified and their M. smegmatis knock-in strains were constructed which were used for in-vitro experiments. Confocal microscopy showed localization of Rv1039c to mitochondria of PMA-differentiated THP1 macrophages; and reduced mitochondrial membrane depolarization and production of mitochondrial superoxides were observed in response to Rv1039c-/-Cterm in comparison to full-length Rv1039c. The C-terminal region of Rv1039c was found to activate caspases 3, 7 and 9 along with upregulated expression of pro-apoptotic genes like Bax and Bim. Rv1039c-/-Cterm also reduced the Cytochrome-C release from the mitochondria and the expression of AnnexinV/PI positive and TUNEL positive cells as compared to Rv1039c. Additionally, Rv1039c was observed to upregulate the TLR4-NF-κB-TNF-α signalling whereas the same was downregulated in response to Rv1039c-/-Cterm. These findings suggested that the C-terminal region of Rv1039c is a molecular mimic of pro-apoptotic host proteins which induce mitochondria-dependent macrophage apoptosis and evoke host immune response. These observations enhance our understanding about the role of PE/PPE proteins at host-pathogen interface.

13.
Clin Neurophysiol ; 162: 174-200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643612

RESUMO

OBJECTIVE: Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS: A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS: In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS: We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE: Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.


Assuntos
Eletroencefalografia , Esclerose Múltipla , Humanos , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/diagnóstico , Eletroencefalografia/métodos , Transtornos Motores/fisiopatologia , Transtornos Motores/diagnóstico , Transtornos Motores/etiologia , Transtornos Motores/terapia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
14.
J Struct Biol ; 216(2): 108082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438058

RESUMO

While protein activity is traditionally studied with a major focus on the active site, the activity of enzymes has been hypothesized to be linked to the flexibility of adjacent regions, warranting more exploration into how the dynamics in these regions affects catalytic turnover. One such enzyme is Xylanase A (XylA), which cleaves hemicellulose xylan polymers by hydrolysis at internal ß-1,4-xylosidic linkages. It contains a "thumb" region whose flexibility has been suggested to affect the activity. The double mutation D11F/R122D was previously found to affect activity and potentially bias the thumb region to a more open conformation. We find that the D11F/R122D double mutation shows substrate-dependent effects, increasing activity on the non-native substrate ONPX2 but decreasing activity on its native xylan substrate. To characterize how the double mutant causes these kinetics changes, nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were used to probe structural and flexibility changes. NMR chemical shift perturbations revealed structural changes in the double mutant relative to the wild-type, specifically in the thumb and fingers regions. Increased slow-timescale dynamics in the fingers region was observed as intermediate-exchange line broadening. Lipari-Szabo order parameters show negligible changes in flexibility in the thumb region in the presence of the double mutation. To help understand if there is increased energetic accessibility to the open state upon mutation, alchemical free energy simulations were employed that indicated thumb opening is more favorable in the double mutant. These studies aid in further characterizing how flexibility in adjacent regions affects the function of XylA.


Assuntos
Endo-1,4-beta-Xilanases , Simulação de Dinâmica Molecular , Mutação , Xilanos , Especificidade por Substrato/genética , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Mutação/genética , Xilanos/metabolismo , Xilanos/química , Domínio Catalítico/genética , Cinética , Conformação Proteica , Espectroscopia de Ressonância Magnética
15.
J Exp Biol ; 227(6)2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456285

RESUMO

While much attention has been paid to understanding slip-related falls in humans, little has been focused on curvilinear paths despite their prevalence, distinct biomechanical demands and increased slipping threat. We determined the mechanics, compensatory stepping reactions and fall risk associated with slips during fixed-speed walking across ranges of path curvature, slipped foot and slip onset phase contexts possible in the community, which builds upon previous work by examining speed-independent effects of curvilinear walking. Twenty-one participants experienced 15 unconstrained slips induced by a wearable friction-reducing device as motion capture and harness load cell data were recorded. Falls were most likely after early stance slips to the inside foot and increased at tighter curvatures. Slip distance and peak velocity decreased as slips began later in stance phase, did not differ between feet, and accelerated on tighter paths. Slipping foot directions relative to heading transitioned from anterior (forward) to posterior (backward) as slips began later in stance, were ipsilateral (toward the slipping foot side) and contralateral (toward the opposite side) for the outside and inside foot, respectively, and became increasingly ipsilateral/contralateral on tighter curvatures. Compensatory steps were placed anteriorly and ipsilaterally after outside and inside foot slips, respectively, and lengthened at later onset phases for outside foot slips only. Our findings illustrate slip magnitude and fall risk relationships that suggest slip direction may influence the balance threat posed by a slip, imply that walking speed may modify slip likelihood, and indicate the most destabilizing curved walking contexts to target in future perturbation-based balance training approaches.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Fenômenos Biomecânicos , Caminhada , Velocidade de Caminhada
16.
J Sports Sci ; 42(2): 160-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38477311

RESUMO

This study presents a method for analysing badminton matches based on the concept of perturbations. We transfer this principle to a badminton rally and describe the decisive shot, which turns a balanced situation into an advantage for one team or one player. Our paper proposes an observational system, which models the decisive shots by using four consecutive actions: impulse (the perturbation), follow-up, survival, and convert. To test the objectivity of the operationalization, independent raters analysed six matches in the singles disciplines of the 2022 World Championships. To evaluate rater agreement, Jaccard coefficient and Cohen's kappa were used. Results show an agreement in identifying impulses of J(R1, R2) = .80, while the agreement in classifying the impulse type (positive/negative) reached κ = .70. A comparison of this perturbation-based analysis and last shot analyses shows significantly different results. Direct errors usually occur in the midcourt (56.4%), whereas most negative perturbations originate from the backcourt (40.0%). In contrast to direct winners, mostly originating from a smash (45.5%), most positive perturbations are created by net shots (30.1%). We argue that our method can be complementary to common last shot analyses and provides a possibility to describe players' strengths and weaknesses in more detail.


Assuntos
Esportes com Raquete , Humanos , Projetos de Pesquisa
17.
Clin Biomech (Bristol, Avon) ; 114: 106218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479343

RESUMO

BACKGROUND: Knee osteoarthritis causes structural joint damage. The resultant symptoms can impair the ability to recover from unexpected gait perturbations. This study compared balance recovery responses to moderate gait perturbations between individuals with knee osteoarthritis and healthy individuals. METHODS: Kinematic data of 35 individuals with end-stage knee osteoarthritis, and 32 healthy individuals in the same age range were obtained during perturbed walking on a treadmill at 1.0 m/s. Participants received anteroposterior (acceleration or deceleration) or mediolateral perturbations during the stance phase. Changes from baseline in margin of stability, step length, step time, and step width during the first two steps after perturbation were compared between groups using a linear regression model. Extrapolated center of mass excursion was descriptively analyzed. FINDINGS: After all perturbation modes, extrapolated center of mass trajectories overlapped between individuals with knee osteoarthritis and healthy individuals. Participants predominantly responded to mediolateral perturbations by adjusting their step width, and to anteroposterior perturbations by adjusting step length and step time. None of the perturbation modes yielded between-group differences in changes in margin of stability and step width during the first two steps after perturbation. Small between-group differences were observed for step length (i.e. 2 cm) of the second step after mediolateral and anteroposterior perturbations, and for step time (i.e. 0.01-0.02 s) of first step after mediolateral perturbations and the second step after outward and belt acceleration perturbations. INTERPRETATION: Despite considerable pain and damage to the knee joint, individuals with knee osteoarthritis showed comparable balance recovery responses after moderate gait perturbations to healthy participants.


Assuntos
Osteoartrite do Joelho , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos , Equilíbrio Postural/fisiologia
18.
PNAS Nexus ; 3(3): pgae073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487161

RESUMO

Understanding how animals swim efficiently and generate high thrust in complex fluid environments is of considerable interest to researchers in various fields, including biology, physics, and engineering. However, the influence of often-overlooked perturbations on swimming fish remains largely unexplored. Here, we investigate the propulsion generated by oscillating tailbeats with superimposed rhythmic perturbations of high frequency and low amplitude. We reveal, using a combination of experiments in a biomimetic fish-like robotic platform, computational fluid dynamics simulations, and theoretical analysis, that rhythmic perturbations can significantly increase both swimming efficiency and thrust production. The introduction of perturbations increases pressure-induced thrust, while reduced phase lag between body motion and the subsequent fluid dynamics response improves swimming efficiency. Moreover, our findings suggest that beneficial perturbations are sensitive to kinematic parameters, resolving previous conflicts regarding the effects of such perturbations. Our results highlight the potential benefits of introducing perturbations in propulsion generators, providing potential hypotheses for living systems and inspiring the design of artificial flapping-based propulsion systems.

19.
Environ Sci Technol ; 58(13): 5796-5810, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507562

RESUMO

Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.


Assuntos
Algas Comestíveis , Kelp , Laminaria , Humanos , Kelp/microbiologia , Disbiose , Agricultura , Ecossistema
20.
Am Nat ; 203(4): 473-489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489777

RESUMO

AbstractTransient dynamics have always intrigued ecologists, but current rapid environmental change (inducing transients even in previously undisturbed systems) has highlighted their importance more than ever. Here, I introduce a method for analyzing the sensitivity of transient ecological dynamics to parameter perturbations. The question the method answers is: how would the community dynamics have unfolded for some time horizon had the parameters been slightly different? I apply the method to three empirically parameterized models: competition between native forbs and exotic grasses in California, a host-parasitoid system, and an experimental chemostat predator-prey model. These applications showcase the ecological insights one can gain from models using transient sensitivity analysis. First, one can find parameters and their combinations whose perturbations disproportionately affect a system. Second, one can identify particular windows of time during which the predicted deviation from the unperturbed trajectories is especially large and utilize this information for management purposes. Third, there is an inverse relationship between transient and long-term sensitivities whenever the interacting populations are ecologically similar; paradoxically, the smaller the immediate response of the system, the more extreme its long-term response will be.


Assuntos
Modelos Teóricos , Poaceae , Animais , Dinâmica Populacional , Comportamento Predatório , Ecossistema , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA