Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Animals (Basel) ; 13(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627376

RESUMO

In response to escalating global demand for poultry, the industry grapples with an array of intricate challenges, from enhancing productivity to improving animal welfare and attenuating environmental impacts. This comprehensive review explores the transformative potential of digital phenotyping, an emergent technological innovation at the cusp of dramatically reshaping broiler production. The central aim of this study is to critically examine digital phenotyping as a pivotal solution to these multidimensional industry conundrums. Our investigation spotlights the profound implications of 'digital twins' in the burgeoning field of broiler genomics, where the production of exact digital counterparts of physical entities accelerates genomics research and its practical applications. Further, this review probes into the ongoing advancements in the research and development of a context-sensitive, multimodal digital phenotyping platform, custom-built to monitor broiler health. This paper critically evaluates this platform's potential in revolutionizing health monitoring, fortifying the resilience of broiler production, and fostering a harmonious balance between productivity and sustainability. Subsequently, the paper provides a rigorous assessment of the unique challenges that may surface during the integration of digital phenotyping within the industry. These span from technical and economic impediments to ethical deliberations, thus offering a comprehensive perspective. The paper concludes by highlighting the game-changing potential of digital phenotyping in the broiler industry and identifying potential future directions for the field, underlining the significance of continued research and development in unlocking digital phenotyping's full potential. In doing so, it charts a course towards a more robust, sustainable, and productive broiler industry. The insights garnered from this study hold substantial value for a broad spectrum of stakeholders in the broiler industry, setting the stage for an imminent technological evolution in poultry production.

3.
Plants (Basel) ; 12(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375956

RESUMO

Drought is being annually exacerbated by recent global warming, leading to crucial damage of crop growth and final yields. Soybean, one of the most consumed crops worldwide, has also been affected in the process. The development of a resistant cultivar is required to solve this problem, which is considered the most efficient method for crop producers. To accelerate breeding cycles, genetic engineering and high-throughput phenotyping technologies have replaced conventional breeding methods. However, the current novel phenotyping method still needs to be optimized by species and varieties. Therefore, we aimed to assess the most appropriate and effective phenotypes for evaluating drought stress by applying a high-throughput image-based method on the nested association mapping (NAM) population of soybeans. The acquired image-based traits from the phenotyping platform were divided into three large categories-area, boundary, and color-and demonstrated an aspect for each characteristic. Analysis on categorized traits interpreted stress responses in morphological and physiological changes. The evaluation of drought stress regardless of varieties was possible by combining various image-based traits. We might suggest that a combination of image-based traits obtained using computer vision can be more efficient than using only one trait for the precision agriculture.

4.
Genome Biol ; 24(1): 94, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098597

RESUMO

BACKGROUND: Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. RESULTS: Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. CONCLUSIONS: Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico , Fenótipo , Genótipo
5.
Plants (Basel) ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771568

RESUMO

Unmanned ground vehicles (UGV) have attracted much attention in crop phenotype monitoring due to their lightweight and flexibility. This paper describes a new UGV equipped with an electric slide rail and point cloud high-throughput acquisition and phenotype extraction system. The designed UGV is equipped with an autopilot system, a small electric slide rail, and Light Detection and Ranging (LiDAR) to achieve high-throughput, high-precision automatic crop point cloud acquisition and map building. The phenotype analysis system realized single plant segmentation and pipeline extraction of plant height and maximum crown width of the crop point cloud using the Random sampling consistency (RANSAC), Euclidean clustering, and k-means clustering algorithm. This phenotyping system was used to collect point cloud data and extract plant height and maximum crown width for 54 greenhouse-potted lettuce plants. The results showed that the correlation coefficient (R2) between the collected data and manual measurements were 0.97996 and 0.90975, respectively, while the root mean square error (RMSE) was 1.51 cm and 4.99 cm, respectively. At less than a tenth of the cost of the PlantEye F500, UGV achieves phenotypic data acquisition with less error and detects morphological trait differences between lettuce types. Thus, it could be suitable for actual 3D phenotypic measurements of greenhouse crops.

6.
Front Plant Sci ; 13: 935748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092402

RESUMO

The genetic information and functional properties of plants have been further identified with the completion of the whole-genome sequencing of numerous crop species and the rapid development of high-throughput phenotyping technologies, laying a suitable foundation for advanced precision agriculture and enhanced genetic gains. Collecting phenotypic data from dicotyledonous crops in the field has been identified as a key factor in the collection of large-scale phenotypic data of crops. On the one hand, dicotyledonous plants account for 4/5 of all angiosperm species and play a critical role in agriculture. However, their morphology is complex, and an abundance of dicot phenotypic information is available, which is critical for the analysis of high-throughput phenotypic data in the field. As a result, the focus of this paper is on the major advancements in ground-based, air-based, and space-based field phenotyping platforms over the last few decades and the research progress in the high-throughput phenotyping of dicotyledonous field crop plants in terms of morphological indicators, physiological and biochemical indicators, biotic/abiotic stress indicators, and yield indicators. Finally, the future development of dicots in the field is explored from the perspectives of identifying new unified phenotypic criteria, developing a high-performance infrastructure platform, creating a phenotypic big data knowledge map, and merging the data with those of multiomic techniques.

7.
Front Plant Sci ; 13: 968855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119566

RESUMO

Tobacco is one of the important economic crops all over the world. Tobacco mosaic virus (TMV) seriously affects the yield and quality of tobacco leaves. The expression of TMV in tobacco leaves can be analyzed by detecting green fluorescence-related traits after inoculation with the infectious clone of TMV-GFP (Tobacco mosaic virus - green fluorescent protein). However, traditional methods for detecting TMV-GFP are time-consuming and laborious, and mostly require a lot of manual procedures. In this study, we develop a low-cost machine-vision-based phenotyping platform for the automatic evaluation of fluorescence-related traits in tobacco leaf based on digital camera and image processing. A dynamic monitoring experiment lasting 7 days was conducted to evaluate the efficiency of this platform using Nicotiana tabacum L. with a total of 14 samples, including the wild-type strain SR1 and 4 mutant lines generated by RNA interference technology. As a result, we found that green fluorescence area and brightness generally showed an increasing trend over time, and the trends were different among these SR1 and 4 mutant lines samples, where the maximum and minimum of green fluorescence area and brightness were mutant-4 and mutant-1 respectively. In conclusion, the platform can full-automatically extract fluorescence-related traits with the advantage of low-cost and high accuracy, which could be used in detecting dynamic changes of TMV-GFP in tobacco leaves.

8.
Front Plant Sci ; 13: 897746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003825

RESUMO

Plant phenotyping is essential in plant breeding and management. High-throughput data acquisition and automatic phenotypes extraction are common concerns in plant phenotyping. Despite the development of phenotyping platforms and the realization of high-throughput three-dimensional (3D) data acquisition in tall plants, such as maize, handling small-size plants with complex structural features remains a challenge. This study developed a miniaturized shoot phenotyping platform MVS-Pheno V2 focusing on low plant shoots. The platform is an improvement of MVS-Pheno V1 and was developed based on multi-view stereo 3D reconstruction. It has the following four components: Hardware, wireless communication and control, data acquisition system, and data processing system. The hardware sets the rotation on top of the platform, separating plants to be static while rotating. A novel local network was established to realize wireless communication and control; thus, preventing cable twining. The data processing system was developed to calibrate point clouds and extract phenotypes, including plant height, leaf area, projected area, shoot volume, and compactness. This study used three cultivars of wheat shoots at four growth stages to test the performance of the platform. The mean absolute percentage error of point cloud calibration was 0.585%. The squared correlation coefficient R 2 was 0.9991, 0.9949, and 0.9693 for plant height, leaf length, and leaf width, respectively. The root mean squared error (RMSE) was 0.6996, 0.4531, and 0.1174 cm for plant height, leaf length, and leaf width. The MVS-Pheno V2 platform provides an alternative solution for high-throughput phenotyping of low individual plants and is especially suitable for shoot architecture-related plant breeding and management studies.

9.
Front Plant Sci ; 12: 640914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692820

RESUMO

Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution.

10.
Plant Methods ; 16: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101451

RESUMO

BACKGROUND: Grapevine trunk diseases (GTDs) such as Esca are among the most devastating threats to viticulture. Due to the lack of efficient preventive and curative treatments, Esca causes severe economic losses worldwide. Since symptoms do not develop consecutively, the true incidence of the disease in a vineyard is difficult to assess. Therefore, an annual monitoring is required. In this context, automatic detection of symptoms could be a great relief for winegrowers. Spectral sensors have proven to be successful in disease detection, allowing a non-destructive, objective, and fast data acquisition. The aim of this study is to evaluate the feasibility of the in-field detection of foliar Esca symptoms over three consecutive years using ground-based hyperspectral and airborne multispectral imaging. RESULTS: Hyperspectral disease detection models have been successfully developed using either original field data or manually annotated data. In a next step, these models were applied on plant scale. While the model using annotated data performed better during development, the model using original data showed higher classification accuracies when applied in practical work. Moreover, the transferability of disease detection models to unknown data was tested. Although the visible and near-infrared (VNIR) range showed promising results, the transfer of such models is challenging. Initial results indicate that external symptoms could be detected pre-symptomatically, but this needs further evaluation. Furthermore, an application specific multispectral approach was simulated by identifying the most important wavelengths for the differentiation tasks, which was then compared to real multispectral data. Even though the ground-based multispectral disease detection was successful, airborne detection remains difficult. CONCLUSIONS: In this study, ground-based hyperspectral and airborne multispectral approaches for the detection of foliar Esca symptoms are presented. Both sensor systems seem to be suitable for the in-field detection of the disease, even though airborne data acquisition has to be further optimized. Our disease detection approaches could facilitate monitoring plant phenotypes in a vineyard.

11.
Front Bioeng Biotechnol ; 8: 623705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520974

RESUMO

Food scarcity, population growth, and global climate change have propelled crop yield growth driven by high-throughput phenotyping into the era of big data. However, access to large-scale phenotypic data has now become a critical barrier that phenomics urgently must overcome. Fortunately, the high-throughput plant phenotyping platform (HT3P), employing advanced sensors and data collection systems, can take full advantage of non-destructive and high-throughput methods to monitor, quantify, and evaluate specific phenotypes for large-scale agricultural experiments, and it can effectively perform phenotypic tasks that traditional phenotyping could not do. In this way, HT3Ps are novel and powerful tools, for which various commercial, customized, and even self-developed ones have been recently introduced in rising numbers. Here, we review these HT3Ps in nearly 7 years from greenhouses and growth chambers to the field, and from ground-based proximal phenotyping to aerial large-scale remote sensing. Platform configurations, novelties, operating modes, current developments, as well the strengths and weaknesses of diverse types of HT3Ps are thoroughly and clearly described. Then, miscellaneous combinations of HT3Ps for comparative validation and comprehensive analysis are systematically present, for the first time. Finally, we consider current phenotypic challenges and provide fresh perspectives on future development trends of HT3Ps. This review aims to provide ideas, thoughts, and insights for the optimal selection, exploitation, and utilization of HT3Ps, and thereby pave the way to break through current phenotyping bottlenecks in botany.

12.
Plant Sci ; 282: 23-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003609

RESUMO

New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal , Interação Gene-Ambiente , Genômica/métodos , Genótipo , Fenótipo , Seleção Genética
13.
Data Brief ; 21: 1296-1301, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456247

RESUMO

This article presents experimental data describing the physiology and morphology of sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen at INRA Toulouse (France). Here, we provide data including specific leaf area, osmotic potential and adjustment, carbon isotope discrimination, leaf transpiration, plant architecture: plant height, leaf number, stem diameter. We also provide leaf areas of individual organs through time and growth rate during the stress period, environmental data such as temperatures, wind and radiation during the experiment. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the physiological basis of heterosis. It is available on the following repository: https://doi.org/10.25794/phenotype/er6lPW7V.

14.
Front Plant Sci ; 9: 1638, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483291

RESUMO

Phenotyping under field environmental conditions is often considered as a bottleneck in crop breeding. Unmanned aerial vehicle high throughput phenotypic platform (UAV-HTPP) mounted with multi-sensors offers an efficiency, non-invasive, flexible and low-cost solution in large-scale breeding programs compared to ground investigation, especially where measurements are time-sensitive. This study was conducted at the research station of the Xiao Tangshan National Precision Agriculture Research Center of China. Using the UAV-HTPP, RGB and multispectral images were acquired during four critical growth stages of maize. We present a method of extracting plant height (PH) at the plot scale using UAV-HTPP based on the spatial structure of the maize canopy. The core steps of this method are segmentation and spatial Kriging interpolation based on multiple neighboring maximum pixels from multiple plants in a plot. Then, the relationships between the PH extracted from imagery collected using UAV-HTPP and the ground truth were examined. We developed a semi-automated pipeline for extracting, analyzing and evaluating multiple phenotypic traits: canopy cover (CC), normalized vegetation index (NDVI), PH, average growth rate of plant height (AGRPH), and contribution rate of plant height (CRPH). For these traits, we identify genotypic differences and analyze and evaluate dynamics and development trends during different maize growth stages. Furthermore, we introduce a time series data clustering analysis method into breeding programs as a tool to obtain a novel representative trait: typical curve. We classified and named nine types of typical curves of these traits based on curve morphological features. We found that typical curves can detect differences in the genetic background of traits. For the best results, the recognition rate of an NDVI typical curve is 59%, far less than the 82.3% of the CRPH typical curve. Our study provides evidence that the PH trait is among the most heritable and the NDVI trait is among the most easily affected by the external environment in maize.

15.
Plant Methods ; 14: 77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181766

RESUMO

BACKGROUND: Wheat (Triticum aestivum L.) productivity is commonly limited by the availability of water. Increasing transpiration efficiency (biomass produced per unit of water used, TE) can potentially lead to increased grain yield in water-limited environments ('more crop per drop'). Currently, the ability to screen large populations for TE is limited by slow, low-throughput and/or expensive screening procedures. Here, we propose a low-cost, low-technology, rapid, and scalable method to screen for TE. The method uses a Pot-in-Bucket system that allows continuous watering of the pots and frequent monitoring of water use. To investigate the robustness of the method across environments, and to determine the shortest trial duration required to get accurate and repeatable TE estimates in wheat, plants from 11 genotypes varying in phenology were sown at three dates and grown for different durations in a polyhouse with partial environmental control. RESULTS: The method revealed significant genotypic variations in TE among the 11 studied wheat genotypes. Genotype rankings for TE were consistent when plants were harvested the same day, at the flag-leaf stage or later. For these harvests, genotype rankings were consistent across experiments despite changes in environmental conditions, such as evaporative demand. CONCLUSIONS: These results indicate that (1) the Pot-In-Bucket system is suitable to screen TE for breeding purposes in populations with varying phenology, (2) multiple short trials can be carried out within a season to allow increased throughput of genotypes for TE screening, and (3) root biomass measurement is not required to screen for TE, as whole-plant TE and shoot-only TE are highly correlated, at least in wheat. The method is particularly relevant in developing countries where low-cost and relatively high labour input may be most applicable.

16.
Plant Methods ; 14: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930695

RESUMO

BACKGROUND: Phenotyping is a bottleneck for the development of new plant cultivars. This study introduces a new hyperspectral phenotyping system, which combines the high throughput of canopy scale measurements with the advantages of high spatial resolution and a controlled measurement environment. Furthermore, the measured barley canopies were grown in large containers (called Mini-Plots), which allow plants to develop field-like phenotypes in greenhouse experiments, without being hindered by pot size. RESULTS: Six barley cultivars have been investigated via hyperspectral imaging up to 30 days after inoculation with powdery mildew. With a high spatial resolution and stable measurement conditions, it was possible to automatically quantify powdery mildew symptoms through a combination of Simplex Volume Maximization and Support Vector Machines. Detection was feasible as soon as the first symptoms were visible for the human eye during manual rating. An accurate assessment of the disease severity for all cultivars at each measurement day over the course of the experiment was realized. Furthermore, powdery mildew resistance based necrosis of one cultivar was detected as well. CONCLUSION: The hyperspectral phenotyping system combines the advantages of field based canopy level measurement systems (high throughput, automatization, low manual workload) with those of laboratory based leaf level measurement systems (high spatial resolution, controlled environment, stable conditions for time series measurements). This allows an accurate and objective disease severity assessment without the need for trained experts, who perform visual rating, as well as detection of disease symptoms in early stages. Therefore, it is a promising tool for plant resistance breeding.

17.
J Exp Bot ; 68(9): 2413-2424, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419363

RESUMO

Pot-based phenotyping of drought response sometimes maintains suboptimal soil water content by applying high-frequency deficit irrigation (HFDI). We examined the effect of this treatment on water and abscisic acid (ABA) relations of two species (Helianthus annuus and Populus nigra). Suboptimal soil water content was maintained by frequent irrigation, and compared with the effects of withholding water and with adequate irrigation. At the same average whole-pot soil moisture, frequent irrigation resulted in larger soil water content gradients, lower root and xylem ABA concentrations ([X-ABA]), along with higher transpiration rates or stomatal conductance, compared with plants from which water was withheld. [X-ABA] was not uniquely related to transpiration rate or stomatal conductance, as frequently irrigated plants showed partial stomatal closure compared with well-watered controls, without differing in [X-ABA] and, in H. annuus, [ABA]leaf. In two P. nigra genotypes differing in leaf area, the ratio between leaf area and root weight in the upper soil layer influenced the soil water content of this layer. Maintaining suboptimal soil water content alters water relations, which might become dependent on root distribution and leaf area, which influences soil water content gradients. Thus genotypic variation in 'drought tolerance' derived from phenotyping platforms must be carefully interpreted.


Assuntos
Secas , Helianthus/fisiologia , Transpiração Vegetal , Populus/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Populus/genética , Solo/química , Fatores de Tempo
18.
Plant Sci ; 251: 101-109, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27593468

RESUMO

There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.


Assuntos
Transpiração Vegetal/genética , Água/metabolismo , Zea mays/genética , Biomassa , Genótipo , Fenótipo , Folhas de Planta , Análise de Regressão , Pressão de Vapor , Zea mays/metabolismo
19.
Plant Methods ; 11: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106438

RESUMO

BACKGROUND: Recent developments in unmanned aerial platforms (UAP) have provided research opportunities in assessing land allocation and crop physiological traits, including response to abiotic and biotic stresses. UAP-based remote sensing can be used to rapidly and cost-effectively phenotype large numbers of plots and field trials in a dynamic way using time series. This is anticipated to have tremendous implications for progress in crop genetic improvement. RESULTS: We present the use of a UAP equipped with sensors for multispectral imaging in spatial field variability assessment and phenotyping for low-nitrogen (low-N) stress tolerance in maize. Multispectral aerial images were used to (1) characterize experimental fields for spatial soil-nitrogen variability and (2) derive indices for crop performance under low-N stress. Overall, results showed that the aerial platform enables to effectively characterize spatial field variation and assess crop performance under low-N stress. The Normalized Difference Vegetation Index (NDVI) data derived from spectral imaging presented a strong correlation with ground-measured NDVI, crop senescence index and grain yield. CONCLUSION: This work suggests that the aerial sensing platform designed for phenotyping studies has the potential to effectively assist in crop genetic improvement against abiotic stresses like low-N provided that sensors have enough resolution for plot level data collection. Limitations and future potential uses are also discussed.

20.
Trends Plant Sci ; 20(3): 139-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524213

RESUMO

Future progress in crop breeding requires a new emphasis in plant physiological phenotyping for specific, well-defined traits. Success in physiological phenotyping to identify parents for use in breeding efforts for improved cultivars has been achieved by employing a multi-tier screening approach with different levels of sophistication and trait resolution. Subsequently, cultivar development required an integrated mix of classical breeding approaches and one or more tiers of phenotyping to identify genotypes expressing the desired trait. The role of high throughput systems can be useful; here, we emphasize that this approach is likely to offer useful results at an initial tier of phenotyping and will need to be complemented with more directed tiers of phenotyping.


Assuntos
Cruzamento/métodos , Produtos Agrícolas/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA