Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2772: 291-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411823

RESUMO

Photoconvertible fluorescent proteins (pcFPs) enable differential coloring of a single organelle. Several pcFP-based probes have been targeted to the endoplasmic reticulum (ER) and can serve as useful tools to study ER dynamics and interactions with other organelles. Here, we describe the procedure to conduct live-cell imaging experiments using ER-targeted pcFP-based probes. Potential problems that might occur during the experiments, their solutions, and several ways to improve the experiments are discussed.


Assuntos
Retículo Endoplasmático , Células Vegetais , Corantes
2.
Front Chem ; 11: 1328081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144887

RESUMO

Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.

3.
Chem Asian J ; 18(20): e202300668, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37682793

RESUMO

Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.


Assuntos
Prótons , Análise Espectral Raman , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Análise Espectral Raman/métodos
4.
Angew Chem Int Ed Engl ; 59(4): 1644-1652, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31692171

RESUMO

The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Análise Espectral Raman/métodos , Proteína Vermelha Fluorescente
5.
Viruses ; 10(8)2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042325

RESUMO

The microtubule cytoskeleton is a primary organizer of viral infections for delivering virus particles to their sites of replication, establishing and maintaining subcellular compartments where distinct steps of viral morphogenesis take place, and ultimately dispersing viral progeny. One of the best characterized examples of virus motility is the anterograde transport of the wrapped virus form of vaccinia virus (VACV) from the trans-Golgi network (TGN) to the cell periphery by kinesin-1. Yet many aspects of this transport event are elusive due to the speed of motility and the challenges of imaging this stage at high resolution over extended time periods. We have established a novel imaging technology to track virus transport that uses photoconvertible fluorescent recombinant viruses to track subsets of virus particles from their site of origin and determine their destination. Here we image virus exit from the TGN and their rate of egress to the cell periphery. We demonstrate a role for kinesin-1 engagement in regulating virus exit from the TGN by removing A36 and F12 function, critical viral mediators of kinesin-1 recruitment to virus particles. Phototracking viral particles and components during infection is a powerful new imaging approach to elucidate mechanisms of virus replication.


Assuntos
Citoplasma/metabolismo , Vaccinia virus/fisiologia , Vírion/fisiologia , Liberação de Vírus , Rede trans-Golgi/fisiologia , Transporte Biológico , Citoplasma/virologia , Células HeLa , Humanos , Cinesinas/metabolismo , Imagem Óptica , Vaccinia virus/genética , Proteínas Virais/genética , Proteínas Estruturais Virais/genética , Replicação Viral , Rede trans-Golgi/virologia
6.
Chemistry ; 24(33): 8268-8274, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29430743

RESUMO

In 2015, a novel way to convert photoconvertible fluorescent proteins was reported that uses the intercept of blue and far-red light instead of traditional violet or near-UV light illumination. This Minireview describes and contrasts this distinct two-step mechanism termed primed conversion with traditional photoconversion. We provide a comprehensive overview of what is known to date about primed conversion and focus on the molecular requirements for it to take place. We provide examples of its application to axially confined photoconversion in complex tissues as well as super-resolution microscopy. Further, we describe why and when it is useful, including its advantages and disadvantages, and give an insight into potential future development in the field.

7.
Methods Cell Biol ; 133: 125-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27263411

RESUMO

Unraveling the structural organization of neurons can provide fundamental insights into brain function. However, visualizing neurite morphology in vivo remains difficult due to the high density and complexity of neural packing in the nervous system. Detailed analysis of neural morphology requires distinction of closely neighboring, highly intricate cellular structures such as neurites with high contrast. Green-to-red photoconvertible fluorescent proteins have become powerful tools to optically highlight molecular and cellular structures for developmental and cell biological studies. Yet, selective labeling of single cells of interest in vivo has been precluded due to inefficient photoconversion when using high intensity, pulsed, near-infrared laser sources that are commonly applied for achieving axially confined two-photon (2P) fluorescence excitation. Here we describe a novel optical mechanism, "confined primed conversion," which employs continuous dual-wave illumination to achieve confined green-to-red photoconversion of single cells in live zebrafish embryos. Confined primed conversion exhibits wide applicability and this chapter specifically elaborates on employing this imaging modality to analyze neural morphology of optically targeted single neurons in the developing zebrafish brain.


Assuntos
Microscopia Confocal/métodos , Neurônios/citologia , Análise de Célula Única/métodos , Peixe-Zebra/anatomia & histologia , Animais , Encéfalo/citologia , Embrião não Mamífero/citologia , Larva/citologia , Neuritos/ultraestrutura , Peixe-Zebra/crescimento & desenvolvimento
8.
J Biophotonics ; 8(3): 226-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24488612

RESUMO

Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial-temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light-driven timer concept that could report relative protein ages at specific sub-cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light-driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible "ruler" for studying temporal hierarchy of spatially ordered processes with exquisite spatial-temporal resolution.


Assuntos
Luz , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Animais , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA