Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 22: 100455, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39114557

RESUMO

Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm-2) combined with UVC (0.085 J cm-2) reduces 85% more cell densities compared to UVC alone (0.085 J cm-2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm-2) increase cell densities by 75-155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.

2.
Environ Pollut ; 348: 123824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513945

RESUMO

ß-cyclocitral (BCC) is an odorous compound that can be produced by bloom-forming cyanobacteria, for example, Microcystis aeruginosa. BCC has been proposed to explain the rapid decline of cyanobacterial blooms in natural water bodies due to its lytic effects on cyanobacteria cells. However, few insights have been gained regarding the mechanisms of its lethality on cyanobacteria. In this study, M. aeruginosa was exposed to 0-300 mg/L BCC, and the physiological responses were comprehensively studied at the cellular, molecular, and transcriptomic levels. The result indicated that the lethal effect was concentration-dependent; 100 mg/L BCC only caused recoverable stress, while 150-300 mg/L BCC caused rapid rupture of cyanobacterial cells. Scanning electron microscope images suggested two typical morphological changes exposed to above 150 mg/LBCC: wrinkled/shrank with limited holes on the surface at 150 and 200 mg/L BCC exposure; no apparent shrinkage at the surface but with cell perforation at 250 and 300 mg/L BCC exposure. BCC can rapidly inhibit the photosynthetic activity of M. aeruginosa cells (40%∼100% decreases for 100-300 mg/L BCC) and significantly down-regulate photosynthetic system Ⅰ-related genes. Also, chlorophyll a (by 30%∼90%) and ATP (by ∼80%) contents severely decreased, suggesting overwhelming pressure on the energy metabolism in cells. Glutathione levels increased significantly, and stress response-related genes were upregulated, indicating the perturbation of intracellular redox homeostasis. Two cell death pathways were proposed to explain the lethal effect: apoptosis-like death as revealed by the upregulation of SOS response genes when exposed to 200 mg/L BCC and mazEF-mediated death as revealed by the upregulation of mazEF system genes when exposed to 300 mg/L BCC. Results of the current work not only provide insights into the potential role of BCC in inducing programmed cell death during bloom demise but also indicate the potential of using BCC for harmful algal control.


Assuntos
Aldeídos , Cianobactérias , Diterpenos , Microcystis , Clorofila A/metabolismo , Cianobactérias/metabolismo , Apoptose
3.
Antioxidants (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38001843

RESUMO

The genus Salvia L., belonging to the Lamiaceae family, contains more than 900 species distributed in various parts of the world. It is a genus containing aromatic plants used both in the culinary field and above all in the cosmetic area to produce several perfumes. Salvia fruticosa Mill., notoriously known as Greek Salvia, is a plant used since ancient times in traditional medicine, but today cultivated and used in various parts of Europe and Africa. Polar and apolar extracts of this plant confirmed the presence of several metabolites such as abietane and labdane diterpenoids, triterpenoids, steroids, and some flavonoids, causing interesting properties such as sedative, carminative, and antiseptic, while its essential oils (EOs) are mainly characterized by compounds such as 1,8-cineole and camphor. The aim of this work concerns the chemical analysis by GC and GC-MS, and the investigation of the biological properties, of the EO of S. fruticosa plants collected in eastern Sicily. The gas-chromatographic analysis confirmed the presence of 1,8-cineole (17.38%) and camphor (12.81%), but at the same time, also moderate amounts of α-terpineol (6.74%), ß-myrcene (9.07%), camphene (8.66%), ß-pinene (6.55%), and α-pinene (6.45%). To study the protective effect of EOs from S. fruticosa (both the total mixture and the individual compounds) on possible damage induced by heavy metals, an in vitro system was used in which a model organism, the liverwort Conocephalum conicum, was subjected to the effect of a mix of heavy metals (HM) prepared using values of concentrations actually measured in one of the most polluted watercourses of the Campania region, the Regi Lagni. Finally, the antioxidant response and the photosynthetic damage were examined. The exogenous application of the EO yields a resumption of the oxidative stress induced by HM, as demonstrated by the reduction in the Reactive Oxygen Species (ROS) content and by the increased activity of antioxidant enzyme catalase (CAT) and glutathione-S-transferase (GST). Furthermore, plants treated with HMs and EO showed a higher Fv/Fm (maximal quantum efficiency of PSII in the dark) with respect to HMs-only treated ones. These results clearly indicate the protective capacity of the EO of S. fruticosa against oxidative stress, which is achieved at least in part by modulating the redox state through the antioxidant pathway and on photosynthetic damage.

4.
Plant Physiol Biochem ; 200: 107791, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243997

RESUMO

Non-specific lipid transfer proteins (nsLTPs) play an important role in plant growth and stress resistance; however, their function in tobacco remains poorly understood. Therefore, to explore the function of NtLTP in response to high temperature, we identified an NtLTPI.38 from tobacco, obtained its overexpression and knockout transgenic plants, and further studied their response to heat stress (42 °C). The results showed that NtLTPI.38 overexpression in tobacco reduced chlorophyll degradation, alleviated the high temperature damage to photosynthetic organs, and enhanced the photosynthetic capacity of tobacco under heat stress. NtLTPI.38 overexpression in heat-stressed tobacco increased the contents of soluble sugar and protein, proline, and flavonoid substances, reduced the relative conductivity, and decreased H2O2, O2•-, and MDA accumulation, and increased the enzymatic antioxidant activities, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), compared to wild type (WT) and knockout mutant plants. RT-PCR confirmed that the expression levels of antioxidant enzymes and thermal stress-related genes were significantly upregulated under thermal stress in overexpression plants. Therefore, NtLTPI.38 enhanced heat tolerance in tobacco by mitigating photosynthetic damage and improving osmoregulation and antioxidant capacity. These results provided the theoretical basis and a potential resource for further breeding projects to improve heat tolerance in plants.


Assuntos
Antioxidantes , Termotolerância , Antioxidantes/metabolismo , Nicotiana/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética
5.
Appl Microbiol Biotechnol ; 103(4): 1837-1850, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617536

RESUMO

The effect of ultraviolet radiation (UVR) on photosynthetic efficiency and the resulting mechanisms against UV exposure employed by phytoplankton are not completely understood. To address this knowledge gap, we developed a novel close-coupled, wavelength-configurable platform designed to produce precise and repeatable in vitro irradiation of Corethron hystrix, a member of a genera found abundantly in the Southern Ocean where UV exposure is high. We aimed to determine its metabolic, protective, and repair mechanisms as a function of varying levels of specific electromagnetic energy. Our results show that the physiological responses to each energy level of UV have a negative linear decrease in the photosynthetic efficiency of photosystem II proportional to UV intensity, corresponding to a large increase in the turnover time of quinone reoxidation. Gene expression changes of photosystem II-related reaction center proteins D1, CP43, and CP47 showed coordinated downregulation whereas the central metabolic pathway demonstrated mixed expression of up and downregulated transcripts after UVR exposure. These results suggest that while UVR may damage photosynthetic machinery, oxidative damage may limit production of new photosynthetic and electron transport complexes as a result of UVR exposure.


Assuntos
Diatomáceas/genética , Diatomáceas/efeitos da radiação , Regulação para Baixo , Regulação da Expressão Gênica/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA