Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Environ Radioact ; 280: 107530, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378736

RESUMO

The global production of radioactive wastes is expected to increase in the coming years as more countries have resorted to adopting nuclear power to decrease their reliance on fossil-fuel-generated energy. Discoveries of remediation methods that can remove radionuclides from radioactive wastes, including those discharged to the environment, are therefore vital to reduce risks-upon-exposure radionuclides posed to humans and wildlife. Among various remediation approaches available, microbe-mediated radionuclide remediation have limited reviews regarding their advances. This review provides an overview of the sources and existing classification of radioactive wastes, followed by a brief introduction to existing radionuclide remediation (physical, chemical, and electrochemical) approaches. Microbe-mediated radionuclide remediation (bacterial, myco-, and phycoremediation) is then extensively discussed. Bacterial remediation involves biological processes like bioreduction, biosorption, and bioprecipitation. Bioreduction involves the reduction of water-soluble, mobile radionuclides to water-insoluble, immobile lower oxidation states by ferric iron-reducing, sulfate-reducing, and certain extremophilic bacteria, and in situ remediation has become possible by adding electron donors to contaminated waters to enrich indigenous iron- and sulfate-reducing bacteria populations. In biosorption, radionuclides are associated with functional groups on the microbial cell surface, followed by getting reduced to immobilized forms or precipitated intracellularly or extracellularly. Myco- and phycoremediation often involve processes like biosorption and bioaccumulation, where the former is influenced by pH and cell concentration. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis on microbial remediation is also performed. It is suggested that two research directions: genetic engineering of radiation-resistant microorganisms and co-application of microbe-mediated remediation with other remediation methods could potentially result in the discovery of in situ or ex situ microbe-involving radioactive waste remediation applications with high practicability. Finally, a comparison between the strengths and weaknesses of each approach is provided.

2.
Toxics ; 12(9)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39330553

RESUMO

Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.

3.
J Sci Food Agric ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39310998

RESUMO

BACKGROUND: In recent decades the demand for freshwater has drastically increased as a consequence of population growth, economic development, climate change and pollution. Therefore, any strategy for wastewater treatment can play a role in alleviating the pressure on freshwater sources. RESULTS: In the present study an autochthonous microalgal pool (MP), isolated from a constructed wetland, was proposed as an alternative to the secondary treatment of an urban wastewater treatment system. The MP removal efficacy was compared to those obtained using Chlorella vulgaris and Scenedesmus quadricauda, against E. coli. Results exhibited a comparable removal efficacy and after 2 days, in samples inoculated with E. coli at lower density, S. quadricauda and C. vulgaris induced a decrease of 2.0 units Log and the autochthonous MP of 1.8 units Log, whereas in samples with E. coli at higher density the bacteria were reduced 2.8, 3.4 and 2.0 units Log by S. quadricauda, C. vulgaris and the autochthonous MP, respectively. Moreover, the identification of microalgal strains isolated from the MP revealed the presence of Klebsormidium sp. K39, C. vulgaris, Tetradesmus obliquus and S. quadricauda. Although the MP composition remained quite constant, at the end of the treatment, a different distribution among the microalgal species was observed with Klebsormidium sp. K39 found as dominant. CONCLUSION: The microalgal-based wastewater treatment appears as a valuable alternative, although further investigations, based on 'omics' approaches, could be applied to better explore any fluctuation within the MP species composition in an in situ trial. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Chemosphere ; 365: 143359, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39299461

RESUMO

Coal mining endangers the environment by contaminating of soil, surface, and ground water with coal mine drainage water (CMW) polluted by heavy metals. Microalgal cultures, hyper-accumulators of heavy metals, represent a promising solution for CMW biotreatment. A bottleneck of this approach is the availability of microalgal strains that combine a large capacity for heavy metal biocapture with a high resilience to their toxic effects. Biotopes contaminated with heavy metals are frequently inhabited by microalgae evolved to be resilient to heavy metal toxicity. Therefore, the autochthonous (locally isolated) microalgal strains are a priori considered to be superior for biotreatment of heavy metal-polluted waste streams. Still, strains from biocollections combine a high pollutant resilience with other biotechnologically important traits such as high productivity, high CO2 sequestration rate etc. Moreover, the strains available "off-the-shelf" would enable rapid development of bioprocesses. Here, we compared the efficiency of CMW biotreatment with autochthonous (isolated from the coal mine drainage sump) and allochthonous microalgae (from a geographically distant phosphate-polluted site). Both autochthonous strains and allochthonous strains turned to be interchangeable under our experimental conditions. Still, the autochthonous strains showed a higher capacity for sequestration of iron, zinc, and manganese, the specific pollutants of the studied CMW. It can be important when the duration of unattended exploitation of the CMW treatment facility is a priority or spikes of the heavy metal concentration in CMW are expected. Therefore, the "off-the-shelf" strains can be a plausible solution for rapid development of CMW treatment technologies from scratch (although screening for acute toxicity of CMW is imperative). On the other hand, locally isolated strains can offer distinct advantages and should be always considered if sufficient time and other resources are available for the development of microalgae-based process for CMW treatment.


Assuntos
Biodegradação Ambiental , Minas de Carvão , Metais Pesados , Microalgas , Poluentes Químicos da Água , Microalgas/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo
5.
Environ Sci Pollut Res Int ; 31(38): 50443-50463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093395

RESUMO

Improper disposal of municipal solid waste led to the release of heavy metals into the environment through leachate accumulation, causing a range of health and environmental problems. Phycoremediation, using microalgae to remove heavy metals from contaminated water, was investigated as a promising alternative to traditional remediation methods. This study explored the potential of Scenedesmus sp. as a phycoremediation agent for heavy metal removal from landfill leachate. The study was conducted in batch, continuous, and membrane bioreactor (MBR). In the batch system, Scenedesmus sp. was added to the leachate and incubated for 15 days before the biomass was separated from the suspension. In the continuous system, Scenedesmus sp. was cultured in a flow-through system, and the leachate was continuously fed into the system with flow rates measured at 120, 150, and 180 mL/h for 27 days. The MBR system was similar to the continuous system, but it incorporated a membrane filtration step to remove suspended solids from the treated water. The peristaltic pump was calibrated to operate at five different flow rates: 0.24 L/h, 0.30 L/h, 0.36 L/h, 0.42 L/h, and 0.48 L/h for the MBR system and ran for 24 h. The results showed that Scenedesmus sp. was effective in removing heavy metals such as lead (Pb), cobalt (Co), chromium (Cr), nickel (Ni), and zinc (Zn) from landfill leachate in all three systems. The highest removal efficiency was observed for Ni, with a removal of 0.083 mg/L in the MBR and 0.068 mg/L in batch mode. The lowest removal efficiency was observed for Zn, with a removal of 0.032 mg/L in the MBR, 0.027 mg/L in continuous mode, and 0.022 mg/L in batch mode. The findings depicted that the adsorption capacity varied among the studied metal ions, with the highest capacity observed for Ni (II) and the lowest for Zn (II), reflecting differences in metal speciation, surface charge interactions, and affinity for the adsorbent material. These factors influenced the adsorption process and resulted in varying adsorption capacities for different metal ions. The study also evaluated the biomass growth of Scenedesmus sp. and found that it was significantly influenced by the initial metal concentration in the leachate. The results of this study suggest that Scenedesmus sp. can be used as an effective phycoremediation agent for removing heavy metals from landfill leachate.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Metais Pesados , Scenedesmus , Poluentes Químicos da Água , Scenedesmus/metabolismo
6.
Int J Phytoremediation ; : 1-12, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109632

RESUMO

This study explores the use of algae for phycoremediation, focusing on how Chlorella sorokiniana and Anabaena laxa detoxify water contaminated with captan, a common fungicide. The efficiency of these species in absorbing captan and the associated biochemical changes were evaluated to assess their potential for environmental protection. Microalgae were exposed to captan concentrations of 15 and 30 mg/L, and various parameters, including captan uptake, chlorophyll (Chl) a, carotenoid levels, and changes in metabolic profiles (soluble carbohydrates, organic acids, amino acids, and fatty acids), were measured. Results showed Anabaena had a higher captan absorption capacity (141.7 µg/g at 15 mg/L and 239.3 µg/g at 30 mg/L) compared to Chlorella (74.43 µg/g and 162 µg/g). Increased captan uptake reduced the growth of both species, as indicated by lower Chl a levels. Both species accumulated osmo-protectants and antioxidants as defense mechanisms, with soluble sugars increasing by 83.49% in Chlorella and 68.87% in Anabaena, and carotenoids increasing by 60.42% and 46.24%, respectively. Principal component analysis revealed distinct species-level responses, with Anabaena showing greater tolerance. The study concludes that both species can effectively remediate captan, with Anabaena being more efficient, indicating their potential for mitigating agrochemical impacts in aquatic environments and promoting sustainable agriculture and water management.


This study uniquely demonstrates the superior capability of Anabaena laxa over Chlorella sorokiniana in remediating captan-contaminated water, highlighting distinct biochemical responses and enhanced tolerance mechanisms. By detailing species-specific metabolic adaptations, it underscores the potential of Anabaena for more effective phycoremediation. This novel insight into the differential resilience of microalgae species offers a promising approach to mitigating agrochemical pollution, advancing sustainable agriculture, and improving water management practices.

7.
Int J Phytoremediation ; 26(12): 1952-1969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028288

RESUMO

Thallium (Tl), a key element in high-tech industries, is recognized as a priority pollutant by the US EPA and EC. Tl accumulation threatens aquatic ecosystems. Despite its toxicity, little is known about its impact on cyanobacteria. This study explores the biochemical mechanisms of Tl(I) toxicity in cyanobacteria, focusing on physiology, metabolism, oxidative damage, and antioxidant responses. To this end, Anabaena and Nostoc were exposed to 400 µg/L, and 800 µg/L of Tl(I) over seven days. Anabaena showed superior Tl(I) accumulation with 7.8% removal at 400 µg/L and 9.5% at 800 µg/L, while Nostoc removed 2.2% and 7.4%, respectively. Tl(I) exposure significantly reduced the photosynthesis rate and function, more than in Nostoc. It also altered primary metabolism, increasing sugar levels and led to higher amino and fatty acids levels. While Tl(I) induced cellular damage in both species, Anabaena was less affected. Both species enhanced their antioxidant defense systems, with Anabaena showing a 175.6% increase in SOD levels under a high Tl(I) dose. This suggests that Anabaena's robust biosorption and antioxidant systems could be effective for Tl(I) removal. The study improves our understanding of Tl(I) toxicity, tolerance, and phycoremediation in cyanobacteria, aiding future bioremediation strategies.


This study presents novel insights into thallium (Tl) phycoremediation using Anabaena laxa and Nostoc muscorum, crucial for addressing the increasing contamination concerns stemming from high-tech industries. Elucidating the tolerance mechanisms and physiological responses of these cyanobacterial species to Tl(I) exposure. It highlights the potential of Anabaena laxa as an effective bio-remediator, offering a sustainable solution to mitigate Tl(I) environmental impact.


Assuntos
Anabaena , Antioxidantes , Biodegradação Ambiental , Nostoc muscorum , Tálio , Anabaena/metabolismo , Nostoc muscorum/metabolismo , Antioxidantes/metabolismo , Tálio/metabolismo , Poluentes Químicos da Água/metabolismo , Fotossíntese , Metaboloma , Nostoc/metabolismo
8.
Environ Sci Pollut Res Int ; 31(36): 48864-48887, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060891

RESUMO

With increasing demand of fossil fuels and water pollution and their environmental impacts, marine green microalgae have gained special attention in both scientific and industrial  fields. This is due to their fast growth in non-arable lands with high photosynthetic activity, their metabolic plasticity, as well as their high CO2 capture capacity. Tetraselmis species, green and eukaryotic microalgae, are not only considered as a valuable source of biomolecules including pigments, lipids, and starch but also widely used in biotechnological applications. Tetraselmis cultivation for high-value biomolecules and industrial use was demonstrated to be a non-cost-effective strategy because of its low demand in nutrients, such as phosphorus and nitrogen. Recently, phycoremediation of wastewater rich in nutrients, chemicals, and heavy metals has become an efficient and economic-alternative that allows the detoxification of waters and induces mechanisms in algal cells for biomolecules rich-energy synthesis to regulate their metabolic pathways. This review aims to shed light on Tetraselmis species for their different culture conditions and metabolites bioaccumulation, as well as their human health and environmental applications. Additionally, phycoremediation of contaminants associated to biofuel production in Tetraselmis cells and their different intracellular and extracellular mechanisms have also been investigated.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Microalgas , Microalgas/metabolismo , Clorófitas/metabolismo
9.
Environ Sci Pollut Res Int ; 31(35): 48545-48560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031311

RESUMO

Microalgae are under research focus for the simultaneous production of biomolecules (e.g., carbohydrates, proteins, pigments and lipids) and bioremediation of toxic substances from wastewater. The current study explores the capability of indigenously isolated microalgae (Desmodesmus subspicatus) for the phycoremediation of As(III) and Cr(VI). Variation of biomolecules (carbohydrate, protein, lipid and chlorophyll) was investigated during phycoremediation. D. subspicatus survived up to the toxicity level of 10 mg/L for As(III) and 0.8 mg/L for Cr(VI). A 70% decline in carbohydrate accumulation was observed at 10 mg/L of As(III). An increased content of proteins (+ 28%) and lipids (+ 32%) within the cells was observed while growing in 0.5 and 0.2 mg/L of As(III) and Cr(VI) respectively. A decrease in carbohydrate accumulation was noted with increasing Cr(VI) concentration, and the lowest (- 44%) was recorded at 0.8 mg/L Cr(VI). D. subspicatus showed an excellent maximum removal efficiency for Cr(VI) and As(III) as 77% and 90% respectively.


Assuntos
Biodegradação Ambiental , Clorofila , Cromo , Microalgas , Clorofila/metabolismo , Microalgas/metabolismo , Cromo/metabolismo , Lipídeos/química , Poluentes Químicos da Água/metabolismo , Carboidratos/química , Arsênio/metabolismo
10.
Plants (Basel) ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999674

RESUMO

Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a "broken geochemical cycle" since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus.

11.
Int J Phytoremediation ; 26(12): 1914-1922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847151

RESUMO

Crude oil spills imperil aquatic ecosystems globally, prompting innovative solutions such as microalgae-based bioremediation. This study explores the potential of Chlorella vulgaris and Scenedesmus quadricauda, for crude oil spill phycoremediation under mixotrophic conditions and varying crude oil concentrations (0.5-2%). C. vulgaris demonstrated notable resilience, thriving up to 1% crude oil exposure, while S. quadricauda adapted to lower concentrations. Optimal growth for both was observed at 0.5% exposure. Chlorophyll a content in C. vulgaris increases at 0.5% exposure but declines above 1%, while a decline was noticeable in chlorophyll b in treatment groups above 1%. Carotenoid levels varied, displaying the highest levels at higher concentrations above 1.5%. Similarly, S. quadricauda showed increased chlorophyll a content at 0.5% exposure, with stable carotenoid levels and a decline in chlorophyll b content at higher concentrations. GC/MS analyses indicated C. vulgaris efficiently degraded aliphatic compounds like decane and tridecane, surpassing S. quadricauda in degrading both aliphatic and aromatic hydrocarbons. Growth kinetics was best represented by the modified Gompertz and logistic models. These findings highlight the species-specific adaptability and optimal concentration for microalgae to degrade crude oil effectively, advancing phycoremediation processes and strategies critical for environmental restoration.


This study marks the first exploration of both Chlorella vulgaris and the previously unexplored Scenedesmus quadricauda for crude oil phycoremediation potential under mixotrophic conditions. Additionally, it pioneers the modeling and study of algae growth kinetics in response to crude oil exposure. Notably, this research demonstrated the adaptability and efficiency of C. vulgaris in degrading crude oil components under mixotrophic conditions up to a level of 1%, while S. quadricauda showed similar capabilities at a concentration of 0.5%.


Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Hidrocarbonetos , Petróleo , Scenedesmus , Poluentes Químicos da Água , Chlorella vulgaris/metabolismo , Scenedesmus/metabolismo , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Hidrocarbonetos/metabolismo , Cinética , Poluição por Petróleo , Clorofila A/metabolismo , Clorofila/metabolismo , Microalgas/metabolismo
12.
Int J Phytoremediation ; 26(10): 1667-1675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712911

RESUMO

From tannery effluent (TE) severely polluted with heavy metals (HMs viz., Cr, Cu, Cd, and Pb), hydrophytic phytoextraction remains a challenge as transplanted plants succumb to death on facing acclimatization shock. Current study was aimed at diluting TE with harvested rainwater (HR) for improving HM phytoextraction potential of Phragmites australis (a hydrophyte) assisted with phycoremediation of coupled algae (viz., Oedogonium sp. and Pithophora sp.). The TE:HR dilutions (TEDs) 0, 25, 50, 75, and 100% (v/v) included three sets: set-1 included algae only, set-2 included P. australis only and set-3 included P. australis coupled with combined algal inoculum. Results showed that P. australis assisted with HR dilution and combined algal inoculum showed significantly greater uptake of HMs from each of the TEDs than respective control treatments. Combined algal application in the TEDs proved phycoremediation assistants based on their bioaccumulation factor (BF). The dry biomass of P. australis in TEDs applied with phycoremediation assistants remained greater than uninoculated ones. Overall, HM translocation factor (TF) of P. australis for Cr, Cu, Cd, and Pb remained ≥ 1. The study concludes that HM phytoextraction is substantially increased when concentrated TE is diluted with HR and assisted with phycoremediation of HM tolerant algae.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poaceae , Chuva , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Metais Pesados/metabolismo , Poaceae/metabolismo , Curtume , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais , Águas Residuárias
13.
Artigo em Inglês | MEDLINE | ID: mdl-38743331

RESUMO

Comparative study on the potential of microalgae consortia and green-synthesized silver nanoparticles using microalgae (M-AgNP) consortia for the treatment of kitchen grey water was investigated in this study. The microalgae consortia consisting of four species, viz., Chlorella sp., Scenedesmus sp., Coelastrum sp., and Pediastrum sp. were isolated from a local fish pond and the silver nanoparticles were synthesized with the same. Thus, synthesized silver nanoparticles exhibited a distinctive yellowish-brown colour and spherical morphology. Extensive qualitative and quantitative characterization techniques were employed to determine their size and morphology. Both microalgae consortia and M-AgNP were used separately for the treatment of kitchen grey water under experimental conditions. The synthesized silver nanoparticles demonstrated promising potential for domestic wastewater treatment, leading to substantial reductions in various parameters: total dissolved solids (29.6%), conductivity (49.4%), chemical oxygen demand (64.6%), and heavy metals (arsenic-63.5%, zinc-45.6%, cadmium-88%, copper-60.52%, and lead-80.82%). Notably, microalgae exhibited superior removal efficiency for nitrate (83.1%), sulphate (70.3%), and phosphate (96.5%) compared to microalgae-synthesized silver nanoparticles. This study underscores the effective utilization of both microalgae and microalgae-synthesized silver nanoparticles for wastewater treatment applications.

14.
Environ Pollut ; 349: 123902, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580061

RESUMO

The textile industry contributes substantially to water pollution. To investigate bioremediation of dye-containing wastewater, the decolorization and biotransformation of three textile azo dyes, Red HE8B, Reactive Green 27, and Acid Blue 29, were considered using an integrated remediation approach involving the microalga Chlamydomonas mexicana and activated sludge (ACS). At a 5 mg L-1 dye concentration, using C. mexicana and ACS alone, decolorization percentages of 39%-64% and 52%-54%, respectively, were obtained. In comparison, decolorization percentages of 75%-79% were obtained using a consortium of C. mexicana and ACS. The same trend was observed for the decolorization of dyes at higher concentrations, but the potential for decolorization was low. The toxic azo dyes adversely affect the growth of microalgae and at high concentration 50 mg L-1 the growth rate inhibited to 50-60% as compared to the control. The natural textile wastewater was also treated with the same pattern and got promising results of decolorization (90%). Moreover, the removal of BOD (82%), COD (72%), TN (64%), and TP (63%) was observed with the consortium. The HPLC and GC-MS confirm dye biotransformation, revealing the emergence of new peaks and the generation of multiple metabolites with more superficial structures, such as N-hydroxy-aniline, naphthalene-1-ol, and sodium hydroxy naphthalene. This analysis demonstrates the potential of the C. mexicana and ACS consortium for efficient, eco-friendly bioremediation of textile azo dyes.


Assuntos
Biodegradação Ambiental , Corantes , Microalgas , Esgotos , Indústria Têxtil , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Corantes/metabolismo , Corantes/química , Esgotos/química , Poluentes Químicos da Água/metabolismo , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Têxteis , Compostos Azo/metabolismo
15.
Chemosphere ; 356: 141931, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614391

RESUMO

Chlorella vulgaris was cultivated for 15 days in 10 different treatments under mixotrophic and heterotrophic conditions, using wastewater from oil and poultry industries as the culture medium. The blends were made with produced water (PW), sterilized produced water (PWs), sterilized poultry wastewater (PoWs), sterilized seawater (SWs), and the addition of sodium nitrate to evaluate cell growth in treatments and the removal of PAHs. The heterotrophic condition showed more effective removal, having an initial concentration of 3.93 µg L-1 and a final concentration of 0.57 µg L-1 of total PAHs reporting 83%, during phycoremediation of (PW) than the mixotrophic condition, with an initial concentration of 3.93 µg L-1 and a final concentration of 1.96 and 43% removal for the PAHs. In the heterotrophic condition, the blend with (PWs + SWs) with an initial concentration of 0.90 µg L-1 and a final concentration of 0.32 µg L-1 had 64% removal of total PAHs compared to the mixotrophic condition with 37% removal having an initial concentration of 0.90 µg L-1 and a final concentration of 0.56 µg L-1. However, the best result in the mixotrophic condition was obtained using a blend of (PWs + PoWs) that had an initial cell concentration of 1.18 × 105 cells mL-1 and reached a final cell concentration of 4.39 × 105 cells mL-1, an initial concentration of 4.76 µg L-1 and a final concentration of 0.37 µg L-1 having a 92% total removal of PAHs. The biostimulation process increased the percentage of PAHs removal by 45% (PW) in the mixotrophic condition. This study showed that it is possible to allow an environmental remediation strategy that significantly reduces effluent toxicity and generates high value-added biomass in contaminated effluents rich in nutrients and carbon, based on a circular bioeconomy model.


Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Águas Residuárias , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Microalgas/metabolismo , Processos Heterotróficos , Eliminação de Resíduos Líquidos/métodos
16.
Front Bioeng Biotechnol ; 12: 1359032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497052

RESUMO

Microalgae biotechnology is hampered by the high production costs and the massive usage of water during large-volume cultivations. These drawbacks can be softened by the production of high-value compounds and by adopting metabolic engineering strategies to improve their performances and productivity. Today, the most sustainable approach is the exploitation of industrial wastewaters for microalgae cultivation, which couples valuable biomass production with water resource recovery. Among the food processing sectors, the dairy industry generates the largest volume of wastewaters through the manufacturing process. These effluents are typically rich in dissolved organic matter and nutrients, which make it a challenging and expensive waste stream for companies to manage. Nevertheless, these rich wastewaters represent an appealing resource for microalgal biotechnology. In this study, we propose a sustainable approach for high-value compound production from dairy wastewaters through cyanobacteria. This strategy is based on a metabolically engineered strain of the model cyanobacterium Synechococcus elongatus PCC 7942 (already published elsewhere) for 2-phenylethanol (2-PE). 2-PE is a high-value aromatic compound that is widely employed as a fragrance in the food and cosmetics industry thanks to its pleasant floral scent. First, we qualitatively assessed the impact of four dairy effluents on cyanobacterial growth to identify the most promising substrates. Both tank-washing water and the liquid effluent of exhausted sludge resulted as suitable nutrient sources. Thus, we created an ideal buffer system by combining the two wastewaters while simultaneously providing balanced nutrition and completely avoiding the need for fresh water. The combination of 75% liquid effluent of exhausted sludge and 25% tank-washing water with a fine-tuning ammonium supplementation yielded 180 mg L-1 of 2-PE and a biomass concentration of 0.6 gDW L-1 within 10 days. The mixture of 90% exhausted sludge and 10% washing water produced the highest yield of 2-PE (205 mg L-1) and biomass accumulation (0.7 gDW L-1), although in 16 days. Through these treatments, the phosphates were completely consumed, and nitrogen was removed in a range of 74%-77%. Overall, our approach significantly valorized water recycling and the exploitation of valuable wastewaters to circularly produce marketable compounds via microalgae biotechnology, laying a promising groundwork for subsequent implementation and scale-up.

17.
Bioresour Technol ; 399: 130578, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479627

RESUMO

This life cycle assessment (LCA) study analyzed the environmental consequences of integrating microalgae-based wastewater treatment into a shrimp farm with recirculating aquaculture systems (RAS). Microalgae treatment produced <10 % of the system's freshwater eutrophication potential (FEP), marine eutrophication potential (MEP) and global warming potential, which was dominantly contributed by electricity use. Microalgae treatment performed comparably to activated sludge treatment for FEP reduction, and was more effective in remediating marine eutrophication. Replacing coal in electricity mix, particularly with renewables, reduced the system's impacts by up to 90-99 %. Performing the LCA based on system expansion generally obtained higher impacts compared to allocation. Utilizing algal biomass for biogas production reduced the MEP; however, production of feed ingredient and biodiesel were not environmentally beneficial. This study proved the use of microalgae for aquaculture wastewater treatment to be environmentally feasible, the results can guide more sustainable RAS operations and design of full-scale microalgae treatment.


Assuntos
Microalgas , Purificação da Água , Animais , Águas Residuárias , Estudos de Viabilidade , Aquicultura/métodos , Purificação da Água/métodos , Crustáceos , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida
18.
Environ Sci Pollut Res Int ; 31(46): 57466-57477, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38175515

RESUMO

Liquid byproducts and organic wastes generated from dairy processing units contribute as the largest source of industrial food wastewater. Though bacteria-mediated treatment strategies are largely implemented, a more effective and innovative management system is needed of the hour. Thus, the current study involves the cultivation of centric diatoms, Chaetoceros gracilis, and Thalassiosira weissflogii in simulated dairy wastewater (SDWW) formulated using varying amounts of milk powder with artificial seawater f/2 media (ASW). The results revealed that cell density and biomass productivity were highest in the 2.5% SDWW treatment cultures of both the strains, the maximum being in C. gracilis (7.5 × 106 cells mL - 1; 21.1 mg L-1 day-1). Conversely, the total carotenoid, chrysolaminarin, and phenol content were negatively impacted by SDWW. However, a considerable enhancement in the total lipid content was reported in the 2.5% SDWW culture of both species. Furthermore, the fatty acid profiling revealed that though the total polyunsaturated fatty acid (PUFA) content was highest in the control setups, the total mono polyunsaturated fatty acid (MUFA) content was higher in the 5% SDWW setups (30.66% in C. gracilis and 33.21% in T. weissflogii). In addition to it, in the cultures utilizing energy from external carbon sources provided by SDWW, the biodiesel produced was also enhanced owing to the heightened cetane number. Thus, the current study evidently highlights the organic carbon acquisition potential of marine diatoms with the scope of providing sustainable biorefinery.


Assuntos
Biomassa , Diatomáceas , Águas Residuárias , Águas Residuárias/química , Indústria de Laticínios , Eliminação de Resíduos Líquidos/métodos
19.
Chemosphere ; 350: 141088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163470

RESUMO

Recently, using microalgae to remediate heavy metal polluted water has been attained a huge attention. However, heavy metals are generally toxic to microalgae and consequently decrease biomass accumulation. To address this issue, the feasibility of adding exogenous glucose, employing algae-bacteria system and algae-bacteria-activated carbon consortium to enhance microalgae growth were evaluated. The result showed that Cd2+ removal efficiency was negatively correlated with microalgal specific growth rate. The exogenous glucose alleviated the heavy metal toxicity to algal cells and thus increased the microalgae growth rate. Among the different treatments, the algae-bacteria-activated carbon combination had the highest biomass concentration (1.15 g L-1) and lipid yield (334.97 mg L-1), which were respectively 3.03 times of biomass (0.38 g L-1) and 4.92 times of lipid yield (68.08 mg L-1) in the single microalgae treatment system. Additionally, this algae-bacteria-activated carbon consortium remained a high Cd2+ removal efficiency (91.61%). In all, the present study developed an approach that had a great potential in simultaneous heavy metal wastewater treatment and microalgal lipid production.


Assuntos
Metais Pesados , Microalgas , Cádmio/toxicidade , Carvão Vegetal , Biomassa , Metais Pesados/toxicidade , Lipídeos , Bactérias , Glucose
20.
World J Microbiol Biotechnol ; 40(3): 81, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285224

RESUMO

An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Ácidos Graxos , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA