Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Mar Pollut Bull ; 206: 116753, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089205

RESUMO

Benzotriazole-type ultraviolet stabilizers (BUVSs) are emerging contaminants whose exposure to wildlife is of concern. In this study, we investigated the contamination status of BUVSs in green turtles (Chelonia mydas) breeding at Ogasawara Islands, Japan, through chemical analysis of 10 BUVSs and 26 congeners of polychlorinated biphenyls (PCBs) in adipose tissue (n = 21) and blood plasma (n = 9). BUVSs were detected significant levels in adipose tissue (19 of 21 turtles), and UV-327 (not detected - 14.8 ng/g-lipid, detection frequency: 76 %), UV-326 (not detected - 24.1 ng/g-lipid, 29 %), and UV-328 (not detected - 5.8 ng/g-lipid, 24 %) were frequently detected. Turtles exhibiting sporadically high concentrations of BUVSs (>10 ng/g-lipid) did not necessarily correspond to individuals with high total PCB concentrations (1.03-70.2 ng/g-lipid). The sporadic occurrence pattern of BUVSs suggested that these contaminants in sea turtles cannot be explained solely by diet but are likely derived from plastic debris.


Assuntos
Monitoramento Ambiental , Bifenilos Policlorados , Triazóis , Tartarugas , Poluentes Químicos da Água , Animais , Oceano Pacífico , Poluentes Químicos da Água/análise , Triazóis/análise , Bifenilos Policlorados/análise , Japão , Cruzamento , Protetores Solares , Tecido Adiposo
2.
Environ Pollut ; 360: 124693, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122173

RESUMO

Plastic additives, such as phthalates, are ubiquitous contaminants that can have detrimental impacts on marine organisms and overall ecosystems' health. Valuable information about the status and resilience of marine ecosystems can be obtained through the monitoring of key indicator species, such as cetaceans. In this study, fatty acid profiles and phthalates were examined in blubber biopsies of free-ranging individuals from two delphinid species (short-finned pilot whale - Globicephala macrorhynchus, n = 45; common bottlenose dolphin - Tursiops truncatus, n = 39) off Madeira Island (NE Atlantic). This investigation aimed to explore the relations between trophic niches (epipelagic vs. mesopelagic), contamination levels, and the health status of individuals within different ecological and biological groups (defined by species, residency patterns and sex). Multivariate analysis of selected dietary fatty acids revealed a clear niche segregation between the two species. Di-n-butylphthalate (DBP), diethyl phthalate (DEP), and bis(2-ethylhexyl) phthalate (DEHP) were the most prevalent among the seven studied phthalates, with the highest concentration reached by DEHP in a bottlenose dolphin (4697.34 ± 113.45 ng/g). Phthalates esters (PAEs) concentration were higher in bottlenose dolphins (Mean ∑ PAEs: 947.56 ± 1558.34 ng/g) compared to pilot whales (Mean ∑ PAEs: 229.98 ± 158.86 ng/g). In bottlenose dolphins, DEHP was the predominant phthalate, whereas in pilot whales, DEP and DBP were more prevalent. Health markers suggested pilot whales might suffer from poorer physiological conditions than bottlenose dolphins, although high metabolic differences were seen between the two species. Phthalate levels showed no differences by ecological or biological groups, seasons, or years. This study is the first to assess the extent of plastic additive contamination in free-ranging cetaceans from a remote oceanic island system, underscoring the intricate relationship between ecological niches and contaminant exposure. Monitoring these chemicals and their potential impacts is vital to assess wild population health, inform conservation strategies, and protect critical species and habitats.

3.
Arch Toxicol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097536

RESUMO

Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.

4.
Sci Total Environ ; 946: 174492, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969113

RESUMO

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.


Assuntos
Agricultura , Plásticos , Poluentes do Solo , Solo , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Poluentes do Solo/análise , Plásticos/análise , Cromatografia Líquida de Alta Pressão/métodos , Solo/química , Monitoramento Ambiental/métodos
5.
Sci Total Environ ; 948: 174827, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047819

RESUMO

Microplastics (MPs) and plastic additive chemicals are emerging pollutants of great concerns around the world. Open dumping sites can be important sources of those pollutants in emerging countries, but little is known about their occurrence, distribution, transport pathway, and remediation approach. This study aimed to obtain the comprehensive dataset on plastic pollution in an open dumping site in Thailand, including (1) the polymer types and organic/inorganic plastic additives in plastic garbage, (2) horizontal distribution of MPs and plastic additives in the surface soil, (3) the effects of soil-capping treatment, and (4) the vertical transport. First, thirty-two plastic garbage collected from the dumping site were analyzed, and a total of 40 organic chemicals (mean: 1400,000 ng/g dw) and 7 heavy metals (mean: 2,030,000 ng/g dw) were identified. The burdens stored in the dumping site were estimated to reach to 3.3-18 tons for organic additives and 4.9-26 tons for heavy metals. In the surface soil analysis, 13 types of polymers in MPs, 20 elements, and 37 organic plastic additives were detected. The pollution levels were significantly higher near the dumping site than at control sites, indicating that the open dumping site is a point source of MPs and plastic additives. Interestingly, a significantly positive correlation was found between the concentrations of MPs and organic additives in soil. This suggests that MPs act as carriers of plastic-derived chemicals. Soil-capping treatment (including removal of some trash) drastically mitigated the contaminant levels in the surface soil, indicating this treatment is one of the effective approaches to control the horizontal distribution of MPs and plastic additives. However, soil core analyzes implied that the vertical transport is still continued even after soil-capping treatment. Our findings provided the comprehensive dataset to support for understanding plastic pollution in the open dumping site.


Assuntos
Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes do Solo , Tailândia , Plásticos/análise , Microplásticos/análise , Poluentes do Solo/análise , Solo/química , Instalações de Eliminação de Resíduos , Metais Pesados/análise
6.
J Environ Manage ; 367: 121880, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059307

RESUMO

Plastic weathering in the natural environment is a dynamic and complex process, where the release of microplastics, nanoplastics and additives poses potential threats to ecosystems. Understanding the release of different weathering products from plastics is crucial for predicting and assessing the environmental hazards of plastics. This study systematically explored these phenomena by exposing polystyrene (PS) to UV irradiation and mechanical agitation for different durations (1 day, 5 days, 10 days, 20 days). The degree of aging, yellowing, brittleness, and the abundance of carbonyl (CO) functional groups in PS were all gradually increasing over time. The weathering pattern of PS surfaces manifested as initial particle oxidation followed by later cracks or flakes formation. The release of products was positively correlated with the aging degree of plastics, as well as among the various released products. Laser infrared and Raman tests indicated that, for microplastics, the size range of 10-20 µm consistently dominated over time, while the primary size range of nanoplastics shifted towards smaller sizes. Additives and other soluble products were prone to release from weathering plastics, with 20 different chemicals detected after 20 d. The release of plastic additives was closely related to aging time, additive type, and quantity. This study contributes to our understanding of the weathering process of plastics, clarifies the release patterns of products over time, and the relationships among different products. It helps predict and assess the environmental pollution caused by plastics.


Assuntos
Microplásticos , Plásticos , Poliestirenos , Poliestirenos/química , Microplásticos/química , Plásticos/química
7.
Anal Bioanal Chem ; 416(22): 4973-4985, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995406

RESUMO

This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.

8.
Mar Pollut Bull ; 206: 116740, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059217

RESUMO

Plastics can contain two types of organic contaminants; absorbed from ambient water, and already contained as additives. To investigate the bioaccumulation of these substances, we conducted two types of exposure experiments using mussels and polyethylene microplastics with absorbed PCBs and containing four types of additives (BDE209, DBDPE, UV327 and UV234). After dietary exposure for 15 days, significantly higher concentrations of total PCBs, UV327 and UV234 were detected in the gonad of exposed groups than in the control groups, respectively. However, no significant differences in BDE209 or DBDPE levels were observed between the control and exposure groups. Although a higher transfer ratio was shown for PCB congeners with octanol-water partition coefficients (logKow) below 7, the ratio was lower for higher-hydrophobic PCBs with logKow above 7. This suggests that higher hydrophobic compounds (not only highly chlorinated PCBs, but also BDE209 and DBDPE) tend not to desorb or leach from plastics.


Assuntos
Bivalves , Exposição Dietética , Microplásticos , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Exposição Dietética/análise , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/análise , Monitoramento Ambiental
9.
Sci Total Environ ; 946: 174325, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942306

RESUMO

Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.

10.
Sci Total Environ ; 946: 173884, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38885719

RESUMO

Soft plastic lures (SPLs) are commonly used artificial lures in recreational angling. Anglers regularly lose SPLs while fishing and there is little knowledge about the environmental impacts of lost SPLs. As with other plastic items, SPLs contain phthalates and other persistent additives that may leach into water. In this study, 16 randomly chosen SPLs of common models were analyzed for the leaching of persistent, water-soluble plastic additives, including phthalates. The estrogenicity of sample extracts from a subsample of 10 SPLs was assessed using luciferase reporter gene bioassays. Over a period of 61 days, 10 of the 16 SPLs leached the targeted phthalates dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DnBP) at median detectable concentrations ranging from 10 ng/g sample BBP to a median of 1001 ng/g DMP as well as 45 persistent, mobile, and toxic (PMT) plastic additives. DEP was detected most frequently in 8 SPLs, followed by BBP (2 SPLs), DMP (2 SPLs) and DnBP (1 SPL). The extract from one SPL with comparatively low phthalate and PMT plastic additive levels was active in the bioassay, indicating high endocrine-disruptive potential, presumably due to unknown additives that were not among the target substances of the methodology used in this study. The study was supplemented by a mail survey among anglers, in which attitudes of anglers towards SPLs were investigated. The survey indicated that SPL loss is a common event during angling. Most participants were concerned about potential ecological impacts of SPLs, wanted the ingredients of SPLs to be labelled and supported legal restrictions concerning toxic ingredients of SPLs. The study shows that SPLs are a potential source of environmental pollution, may pose human health risks and need further investigation, considering the frequent use of SPLs in recreational angling.


Assuntos
Ácidos Ftálicos , Plásticos , Plásticos/análise , Ácidos Ftálicos/análise , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Recreação , Exposição Ambiental
11.
J Hazard Mater ; 476: 134997, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908188

RESUMO

Microplastics (MPs) co-exist with plastic additives and other emerging pollutants in the drinking water distribution systems (DWDSs). Due to their strong adsorption capacity, MPs may influence the occurrence of additives in DWDSs. The article investigated the occurrence of typical additives bisphenol A (BPA) and dibutyl phthalate (DBP) in DWDSs under the influence of polyamide 6 (PA6) MPs and further discussed the partitioning of BPA/DBP on PA6s, filling a research gap regarding the impact of adsorption between contaminants on their occurrence within DWDSs. In this study, adsorption experiments of BPA/DBP with PA6s and pipe scales were conducted and their interaction mechanisms were investigated. Competitive adsorption experiments of BPA/DBP were also carried out with site energy distribution theory (SEDT) calculations. The results demonstrated that PA6s might contribute to the accumulation of BPA/DBP on pipe scales. The adsorption efficiencies of BPA/DBP with both PA6s and pipe scales were 26.47 and 2.61 times higher than those with only pipe scales. It was noteworthy that BPA had a synergistic effect on the adsorption of DBP on PA6s, resulting in a 26.47 % increase in DBP adsorption. The article provides valuable insights for the compounding effect of different types of additives in water quality monitoring and evaluation.

12.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930935

RESUMO

Antimony (Sb) contamination poses significant environmental and health concerns due to its toxic nature and widespread presence, largely from anthropogenic activities. This study addresses the urgent need for an accurate speciation analysis of Sb, particularly in water sources, emphasizing its migration from polyethylene terephthalate (PET) plastic materials. Current methodologies primarily focus on total Sb content, leaving a critical knowledge gap for its speciation. Here, we present a novel analytical approach utilizing frontal chromatography coupled with inductively coupled plasma mass spectrometry (FC-ICP-MS) for the rapid speciation analysis of Sb(III) and Sb(V) in water. Systematic optimization of the FC-ICP-MS method was achieved through multivariate data analysis, resulting in a remarkably short analysis time of 150 s with a limit of detection below 1 ng kg-1. The optimized method was then applied to characterize PET leaching, revealing a marked effect of the plastic aging and manufacturing process not only on the total amount of Sb released but also on the nature of leached Sb species. This evidence demonstrates the effectiveness of the FC-ICP-MS approach in addressing such an environmental concern, benchmarking a new standard for Sb speciation analysis in consideration of its simplicity, cost effectiveness, greenness, and broad applicability in environmental and health monitoring.


Assuntos
Antimônio , Espectrometria de Massas , Polietilenotereftalatos , Antimônio/análise , Antimônio/química , Polietilenotereftalatos/química , Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos
13.
J Hazard Mater ; 476: 134631, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901257

RESUMO

The occurrence and health risks of fluorescent whitening agents (FWAs) in bottled water were reported for the first time. FWA184 and FWA393 were the most frequently detected FWAs, with mean concentrations of 3.99-17.00 ng L-1. Phthalates (PAEs) such as dibutyl phthalate (DBP), di-iso-butyl phthalate (DiBP), and diethylhexyl phthalate (DEHP) were prevalent in bottled water, with mean levels of 40.89-716.66 ng L-1, and their concentrations in bottled water were much higher than those of FWAs. FWAs and PAEs in bottles and caps were extracted using organic solvent, and the correlation analysis showed that FWA393 and DEHP most likely originated from bottles, while bottle caps were the main sources of DBP and DiBP. The calculated risk quotients (RQs) of target substances and all age groups were considerably lower than the threshold of 0.1, indicating that consuming bottled water containing these plastic additives was unlikely to pose health risks for people of all ages. However, RQ values for underage people were several times higher than those for adults and hence cannot be neglected; therefore, special attention should be paid to understand the potential risks posed by the exposure to these plastic additives during early life stages, especially the infant stage.


Assuntos
Água Potável , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Água Potável/análise , Água Potável/química , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Medição de Risco , Clareadores/análise , Adulto
14.
Environ Res ; 255: 119177, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788789

RESUMO

Various plastic materials are used in contact with agricultural soil, like mulching films, crop covers, weed controlling fabrics and nets. Polyethylene (PE) mulches have already been recognized as a significant source of plastic in soil and they have been shown to contain additives like phthalates, known as endocrine disruptors. However, other agricultural plastics are less studied, and little is known on the substances potentially released from them endangering biodiversity and the human health. This research aims to assess whether different agricultural plastics release additives into soil and to compare the release among various materials. We collected soil samples from 38 agricultural fields where conventional mulching films (PE), weed controlling fabrics (PP), biodegradable mulches based on polybutylene adipate terephthalate (PBAT), frost covers (PP), and oxo-degradable films (at least OXO-PE) were used. We analyzed the soils for phthalates and acetyl tributyl citrate (ATBC), used as plastic additives, and for polycyclic aromatic hydrocarbons (PAH) and dodecane that have high affinity for plastics. In comparison to the control soils, dibutylphthalate (DBP) and ATBC concentrations were significantly higher in soils mulched with PE and, partly, with biodegradable films. DBP concentration found in soil samples ranged between below the limit of quantification at a control site (1.5 µg kg-1) to 135 µg kg-1 at a site mulched with OXO-PE. The highest ATBC concentration, 22 ± 6 µg kg-1, was registered in a site mulched with PE, showing a statistically significant difference not only in comparison to the controls but also when compared to sites mulched with OXO-PE (p = 0.029) and PBAT (p < 0.009). On the contrary, the use of agricultural plastics did not influence the concentration of PAHs and dodecane. Our results indicate that agricultural plastics are a source of some organic chemicals to agricultural soils, including phthalates that are known for posing threat to soil ecosystem and human health.


Assuntos
Agricultura , Plásticos Biodegradáveis , Ácidos Ftálicos , Poluentes do Solo , Solo , Ácidos Ftálicos/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Plásticos Biodegradáveis/química , Monitoramento Ambiental/métodos , Plásticos/análise , Plásticos/química
15.
Environ Pollut ; 356: 124218, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815887

RESUMO

Chemical additives are important components in commercial microplastics and their leaching behaviour has been widely studied. However, little is known about the potential effect of additives on the adsorption/desorption behaviour of pollutants on microplastics and their subsequent role as vectors for pollutant transport in the environment. In this study, two types of commercial polyvinyl chloride (PVC1 and PVC2) microplastics were aged by UV irradiation and biotic modification via biofilm colonization to investigate the adsorption and desorption behaviour of bisphenol A (BPA). Surface cracks and new functional groups (e.g., O-H) were found on PVC1 after UV irradiation, which increased available adsorption sites and enhanced H‒bonding interaction, resulting in an adsorption capacity increase from 1.28 µg/L to 1.85 µg/L. However, the adsorption and desorption capacity not showed significant changes for PVC2, which might be related to the few characteristic changes after UV aging with the protection of light stabilizers and antioxidants. The adsorption capacity ranged from 1.28 µg/L to 2.06 µg/L for PVC1 and PVC2 microplastics, and increased to 1.62 µg/L-2.95 µg/L after colonization by biofilms. The increased adsorption ability might be related to the N-H functional group, amide groups generated by microorganisms enhancing the affinity for BPA. The opposite effect was observed for desorption. Plasticizers can be metabolized during biofilm formation processes and might play an important role in microorganism colonization. In addition, antioxidants and UV stabilizers might also indirectly influence the colonization of microorganisms' on microplastics by controlling the degree to which PVC microplastics age under UV. The amount of biomass loading on the microplastics would further alter the adsorption/desorption behaviour of contaminants. This study provides important new insights into the evaluation of the fate of plastic particles in natural environments.


Assuntos
Compostos Benzidrílicos , Biofilmes , Microplásticos , Fenóis , Cloreto de Polivinila , Raios Ultravioleta , Poluentes Químicos da Água , Cloreto de Polivinila/química , Compostos Benzidrílicos/química , Fenóis/química , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Plásticos/química
16.
Environ Sci Technol ; 58(19): 8336-8348, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703133

RESUMO

The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.


Assuntos
Plásticos , Noruega , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água
17.
Sci Total Environ ; 932: 172808, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719051

RESUMO

Microplastics (MPs) are environmental pollutants of great concern around the world. The source of MPs in road dust need to be identified to develop strategies to control and reduce MPs emissions by stormwater runoff, one of the main sources of MPs to the aquatic environment. However, little information on the sources of MPs in road dust is available due to lack of their suitable indicators. In this study organic/inorganic plastic additives were used as chemical indicators to understand the source of MPs in road dust. The polymers, organic additives, and heavy metals in 142 commercial plastic products suspected of being source of MPs in road dust were determined. As the results, 147 organic additives and 17 heavy metals were identified, and different additive profiles were found for different polymer types and use application of plastic products. Further, 17 road dust samples were collected from an urban area in Kumamoto City, Japan. and analyzed the MPs (1-5 mm diameter) and their additive chemicals. Polymethyl methacrylate (PMMA) was the dominant polymer accounting for 86 % in the samples, followed by ethylene vinyl acetate (EVA) and polyvinyl chloride (PVC). In total, 48 organic additives and 14 heavy metals were identified in the MPs samples. The organic/inorganic additive profiles of plastic products and MPs in road dust were compared, and several road dust-associated MPs had similar additive profiles to road paints, braille blocks, road marking sheets, and reflectors. This suggested that the MPs were originated from these plastics on the road surface. Road paint was the most important contributor of MPs in road dust (60 % of the MPs), followed by braille block (23 %), road marking sheet (8.3 %), and reflector (2.4 %). These results indicated that organic/inorganic plastic additives in plastic products can be used as chemical indicators to trace the sources of MPs in road dust.

18.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762985

RESUMO

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Ecotoxicologia , Dano ao DNA/efeitos dos fármacos
19.
Anal Chim Acta ; 1302: 342487, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580405

RESUMO

BACKGROUND: Many of the chemicals frequently used as additives have been recognised as hazardous substances, and therefore their analysis is necessary to evaluate plastic contamination risk. Additives analysis in plastic samples is usually performed by methods involving high volumes of toxic solvents or having high detection limits. In this work, a novel, fast, solventless and reliable green method was developed for the automated analysis of plastic additives from plastic samples. The proposed method consists of in-tube extraction dynamic headspace sampling (ITEX-DHS) combined with gas chromatography (GC) and mass spectrometry (MS/MS) determination. RESULTS: Several parameters affecting the ITEX-DHS extraction of 47 additives in plastic samples (including phthalates, bisphenols, adipates, citrates, benzophenones, organophosphorus compounds, among others) were optimised. The use of matrix-matched calibration, together with labelled surrogate standards, minimises matrix effects, resulting in recoveries between 70 and 128%, with good quantitation limits (below 0.1 µg g-1 for most compounds) and precision (<20%). The method proposed can be applied to any type of polymer, but due to the existence of the matrix effect, calibrates with the adequate matrix should be performed for each polymer. SIGNIFICANCE: This method represents an effective improvement compared to previous methods because it is fast, solvent-free, fully automated, and provides reliable quantification of additives in plastic samples.

20.
Sci Total Environ ; 931: 172849, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38685431

RESUMO

Sediment cores from three major French watersheds (Loire, Meuse and Moselle) have been dated by 137Cs and 210Pbxs from 1910 (Loire), 1947 (Meuse) and 1930 (Moselle) until the present in order to reconstruct trajectories of plastic additive contaminants including nine phthalate esters (PAEs) and seven organophosphate esters (OPEs), measured by gas chromatography-mass spectrometer (GC-MS-MS). Historical levels of ∑PAEs were higher than those of ∑OPEs in the Loire and the Moselle sediments, while ∑PAEs and ∑OPEs contents were of the same order of magnitude in the Meuse sediments. Although increases in concentrations do not evolve linearly, our results clearly indicate an increase in OPEs and PAEs concentrations from the 1950-1970 period onwards, compared with the first half of the 20th century. Our results show that, ∑OPE contents increase gradually over time in the Loire and Meuse rivers but evolve more randomly in the Moselle River. Trajectories of ∑PAEs depend on the river and no generality can be established, suggesting sedimentary reworking and/or local contamination. Data from this study allowed comparisons of contents of ∑OPEs and ∑PAEs between rivers, with ∑OPE concentrations in the Moselle River > Meuse River > Loire River, and concentrations of ∑PAEs in the Loire River > Moselle River > Meuse River. Among all PAEs, di(2-ethylhexyl) phthalate (DEHP) was the most abundant in all sediment samples, followed by diisobutyl phthalate (DiBP). Tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE in sediments of the three rivers. In addition, strong positive Pearson correlations were observed between organic matter (OM) parameters and OPE concentrations, and to a lesser extent, between OM parameters and PAE concentrations. This is particularly true for the Moselle River and for the Loire River, but less so for the Meuse River.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA