Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 480: 135976, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39369675

RESUMO

Microplastics (MPs) are pervasive contaminants that pose significant ecological and human health risks, emerging as one of the most widespread anthropogenic pollutants in natural environments. This study investigates the abundance, characteristics, and distribution of microplastics (MPs) in the Yamuna River, encompassing 29 sampling points across urban, rural, and industrial zones in and around Delhi, Mathura, Haryana, and Agra. Microplastics were identified and quantified using Nile red dye staining and Micro-Raman spectroscopy, with particle size distribution predominantly between 2 µm to 80 µm and the largest detected particle measuring 256.5 µm. The average MPs concentration was 14,717 ± 4444 L-1, with a significant abundance of hazardous polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). The study found that MPs were predominantly fragments and films (65.6 %) and fibers (30.6 %), with transparent particles being the most prevalent. The Pollution Load Index (PLI) consistently indicated high-risk levels (PLI > 100) at all sampling sites, highlighting substantial MP contamination. These results underscore the urgent need for continuous monitoring and the development of robust management strategies to address microplastic pollution in the Yamuna River. This study provides valuable insights into MPs spatial distribution and persistence, contributing to an improved understanding of their environmental impacts and guiding future mitigation and regulatory efforts.

2.
Environ Geochem Health ; 46(10): 385, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167301

RESUMO

Due to anthropogenic activities such as mining, several agricultural soils are polluted by multiple heavy metals. However, it is still unclear whether multiple heavy metals could affect the distribution of antibiotic resistance genes (ARGs), and how metals affect ARGs. To understand ARGs' distribution in heavy metal-polluted soils, we chose soils contaminated by different types and contents of heavy metals to determine the ARGs' number and abundance through high-throughput quantitative real-time PCR (HT-qPCR) in this study. Additionally, the factors affecting ARGs' distribution, such as soil properties, mobile genetic genes (MGEs), and bacterial communities, were explored. The results demonstrated that the sampled soils were primarily contaminated by Cd, As, Pb, and Zn, and the pollution load index (PLI) values of these metals ranged from 1.3 to 2.7, indicating a low to moderate degree of heavy metal contamination. The number and abundance of ARGs ranged from 44 to 113 and from 2.74 × 107 copies/g to 1.07 × 108 copies/g, respectively. Besides, abundant MGEs in soils, ranging from 1.84 × 106 copies/g to 5.82 × 106 copies/g, were observed. The pathway analysis suggested that MGEs were the most important factor directly affecting ARG abundance (0.89). Notably, heavy metals also affected the ARG abundance. Proteobacteria and Actinobacteria, the main heavy metal tolerant bacteria, were found to be the main hosts of ARGs through network analysis. ARG-carrying pathogens (ACPs) in agricultural soils were found to carry MGEs, indicating a high risk of dissemination. This study provided important information for understanding the ARGs' fate and also the key factors affecting ARGs' spread in multiple heavy metal-contaminated soils.


Assuntos
Agricultura , Genes Bacterianos , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Metais Pesados/análise , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Solo/química , Monitoramento Ambiental , Reação em Cadeia da Polimerase em Tempo Real
3.
Environ Geochem Health ; 46(10): 391, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172248

RESUMO

This study investigates the prevalence, distribution, and ecological consequences of 21 heavy metals (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) in the soils between the Mahi and Dhadhar rivers in Gujarat, India. It aims to assess the seasonal variations in soil contamination and the potential human health risk associated with the heavy metal exposure through ingestion, inhalation, and dermal contact pathways. Soil samples were collected from 57 sites across three distinct seasons and analyzed using indices such as the geo-accumulation index, contamination factor, pollution load index, ecological risk factor, and global potential ecological risk. Human health risks were also evaluated for carcinogenic and non-carcinogenic effects. The findings reveal significant soil contamination, especially during the Monsoon and Post-Monsoon seasons, with heavy metals like Ag, Cd, Cr, Cu, Co, Ni, and Pb posing considerable ecological threats. Cr and Ni were identified as presenting the highest carcinogenic risks, while Fe and Cr posed major non-carcinogenic challenges. Seasonal variations significantly influenced heavy metal concentrations and distribution patterns. The study highlights the urgent need for comprehensive policies and sustainable practices to mitigate soil contamination and protect environmental health. It emphasizes the critical role of human activities, such as industrial, agricultural, and mining operations, in soil degradation and calls for increased community awareness and action to address these challenges.


Assuntos
Monitoramento Ambiental , Metais Pesados , Estações do Ano , Poluentes do Solo , Metais Pesados/análise , Índia , Poluentes do Solo/análise , Medição de Risco , Humanos , Exposição Ambiental , Solo/química
4.
Environ Pollut ; 361: 124812, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182811

RESUMO

Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , México , Medição de Risco , Microplásticos/análise , Poluentes Químicos da Água/análise , Água Doce/química , Sedimentos Geológicos/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-34501959

RESUMO

The derelict Remance gold mine is a possible source of pollution with potentially toxic elements (PTEs). In the study area, diverse mine waste has been left behind and exposed to weather conditions, and poses risks for soil, plants and water bodies, and also for the health of local inhabitants. This study sought to perform an ecological and health risk assessment of derelict gold mining areas with incomplete remediation, including: (i) characterizing the geochemical distribution of PTEs; (ii) assessing ecological risk by estimating the pollution load index (PLI) and potential ecological risk index (RI); (iii) assessing soil health by dehydrogenase activity; and iv) establishing non-carcinogenic (HI) and carcinogenic risks (CR) for local inhabitants. Soil health seems to depend on not only PTE concentrations, but also on organic matter (OM). Both indexes (PLI and RI) ranged from high to extreme near mining and waste accumulation sites. As indicated by both the HI and CR results, the mining area poses a health risk for local inhabitants and particularly for children. For this reason, it will be necessary to set up environmental management programs in the areas that are most affected (tailings and surrounding areas) and accordingly establish the best remediation strategies to minimize risks for the local population.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Monitoramento Ambiental , Ouro , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA