RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Bronchitis is a respiratory disease characterized by a productive cough. Polygala tenuifolia Willd., commonly known as Yuan zhi, is a traditional Chinese herbal medicine used for relieving cough and removing phlegm. Despite its historical use, studies are lacking on the effectiveness of P. tenuifolia in treating bronchitis. Furthermore, the molecular mechanisms underlying the action of its bioactive compounds remain unknown. AIM OF THE STUDY: This study aims to identify the main bioactive compounds responsible for the effects of P. tenuifolia liquid extract (PLE) in treating bronchitis and to elucidate the associated molecular mechanisms. MATERIALS AND METHODS: The main chemical compounds in PLE were identified and determined using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The antitussive, expectorant and anti-inflammatory activities of PLE were evaluated in an ammonia-induced mouse cough model, a tracheal phenol red excretion mouse model, and a xylene-induced ear swelling mouse model, respectively. A network pharmacology analysis was conducted to investigate the associated gene targets, gene ontology, and KEGG pathways related to the main bioactives in PLE targeting bronchitis. PLE and its five bioactive compounds were assessed for their potential anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Western blot analysis was conducted to elucidate the associated molecular mechanisms. RESULTS: Thirty-seven compounds in PLE were identified, and twelve main compounds were further quantified in PLE using UPLC-MS/MS. PLE oral gavage administrations (0.6 and 0.12 mg/kg) for 7 days markedly reduced cough frequency, prolonged latency period of cough, reduced phlegm and inflammation in mice. The network pharmacology analysis identified 57 gene targets of PLE against bronchitis. The PI3K/AKT and MAPK signalling pathways were the top two modulated pathways. In RAW264.7 cells, PLE (12.5-50 µg/mL) significantly reduced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α. PLE downregulated LPS-elevated protein targets in both PI3K/AKT and MAPK signaling pathways. In PLE, tenuifolin, polygalaxanthone â â â , polygalasaponin ⠩⠩⠤⠢, tenuifoliside B, and 3,6'-Disinapoyl sucrose, were identified as the top five core components responsible for treating bronchitis. These compounds were also found to modulate the protein targets in the PI3K/AKT and MAPK signalling pathways. CONCLUSIONS: This study demonstrated the potential therapeutic effects of PLE on bronchitis by reducing cough, phlegm and inflammation. The anti-inflammatory action and molecular mechanisms of the 5 main bioactive compounds in PLE were partly validated through the in vitro assays. The findings provide valuable insights into the mechanisms underlying the traditional use of PLE for bronchitis.
Assuntos
Anti-Inflamatórios , Bronquite , Tosse , Farmacologia em Rede , Extratos Vegetais , Raízes de Plantas , Polygala , Espectrometria de Massas em Tandem , Animais , Polygala/química , Espectrometria de Massas em Tandem/métodos , Camundongos , Tosse/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Raízes de Plantas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bronquite/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antitussígenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Modelos Animais de Doenças , Xilenos , Amônia , Espectrometria de Massa com Cromatografia LíquidaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW: The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS: The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS: The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1ß and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION: PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Assuntos
Polygala , Saponinas , Distúrbios do Início e da Manutenção do Sono , Animais , Camundongos , Hipnóticos e Sedativos/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Saponinas/farmacologia , Fator de Necrose Tumoral alfa , Serotonina , Camundongos Endogâmicos ICR , Ácido gama-AminobutíricoRESUMO
Introduction: Metabolic-associated fatty liver disease (MAFLD) is a common chronic metabolic disease that seriously threatens human health. The pharmacological activity of unsaturated fatty acid-rich vegetable oil interventions in the treatment of MAFLD has been demonstrated. This study evaluated the pharmacological activity of Polygala tenuifolia Willd, which contains high levels of 2-acetyl-1,3-diacyl-sn-glycerols (sn-2-acTAGs). Methods: In this study, a mouse model was established by feeding a high-fat diet (HFD, 31% lard oil diet), and the treatment group was fed a P. tenuifolia seed oil (PWSO) treatment diet (17% lard oil and 14% PWSO diet). The pharmacological activity and mechanism of PWSO were investigated by total cho-lesterol (TC) measurement, triglyceride (TG) measurement and histopathological observation, and the sterol regulatory element-binding protein-1 (SREBP1), SREBP2 and NF-κB signaling pathways were evaluated by immunofluorescence and Western blot analyses. Results: PWSO attenuated the increases in plasma TC and TG levels. Furthermore, PWSO reduced the hepatic levels of TC and TG, ameliorating hepatic lipid accumulation. PWSO treatment effectively improves the level of hepatitic inflammation, such as reducing IL-6 levels and TNF-α level. Discussion: PWSO treatment inactivated SREBP1 and SREBP2, which are involved in lipogenesis, to attenuate hepatic lipid accumulation and mitigate the inflammatory response induced via the NF-κB signaling pathway. This study demonstrated that PWSO can be used as a relatively potent dietary supplement to inhibit the occurrence and development of MAFLD.
RESUMO
Polysaccharides from the Polygala tenuifolia Willd. have been shown multiple biological activities, however the structural feature and immunomodulatory activity are still rarely reported. In this study, a polysaccharide was obtained by purification, and its structural characteristics and immune activity were analyzed. The polysaccharide was a homogeneous macromolecular polysaccharide with smooth flat flakes surface structure and molecular weight of 2.34 × 105 Da, and composed of Rha, Ara, Xyl, Man, Glc, Gal. Methylation and NMR analyses confirmed that the repeating unit of polysaccharide was [â3)-α-Araf-(1 â 3)-α-Araf-(1 â 5)-α-Araf-(1 â 5)-α-Araf-(1 â 3)-α-Araf-(1 â ]n, and the side chain was α-Araf-(1 â 6)-ß-Galp-(1 â 6)-ß-Glcp-(1 â 6)-α-Manp-(1â, which was attached to the C3 of â 3,5)-α-Araf-(1 â. In vitro, the RAW 264.7 cells were co-cultivated with LPS and polysaccharide, and the results revealed that the polysaccharide can promote cell proliferation, activate effectors to release cytokines (TNF-α, IL-6, IL-1ß), and then activate macrophages for immune activity. Therefore, we can infer that the polysaccharide might regard as a potential immunomodulator.
Assuntos
Polygala , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo , Macrófagos/metabolismoRESUMO
Senegenin is the main bioactive ingredient isolated from the dried roots of Polygala tenuifolia Willd. In recent years, senegenin has been proved to possess a variety of pharmacological activities, such as anti-oxidation, anti-inflammation, anti-apoptosis, enhancement of cognitive function. Besides, it has a good development prospect for the treatment of neurodegenerative diseases, depression, osteoporosis, cognitive dysfunction, ischemia-reperfusion injury and other diseases. However, there is no systematic literature that fully demonstrates the pharmacological effects of senegenin. In order to meet the needs of new drug research and precise medication, this review summarized the neuroprotective effects, mechanisms and gastrointestinal toxicity of senegenin based on the literatures published from the past 2 decades. In addition, an in-depth analysis of the existing problems in the current research as well as the future research directions have been conducted in order to provide a basis for the clinical application of this important plant extract.
RESUMO
Polygala tenuifolia is extensively used to treat amnesia in traditional Chinese medicine, and pharmacological studies have reported the beneficial effects of P. tenuifolia on intelligence and cognition. In the present study, the crude polysaccharide alkali-extracted from P. tenuifolia roots (PTB) inhibited lipopolysaccharide-induced microglia/astrocyte activation and significantly improved the learning and memory ability of Alzheimer's disease (AD) rats. To determine its bioactive components, a heteropolysaccharide (PTBP-1-3) was isolated from PTB. Structural analysis showed that PTBP-1-3 was composed of α-L-Araf-(1â, â3)-α-L-Araf-(1â, â5)-α-L-Araf-(1â, â3,5)-α-L-Araf-(1â, â2,5)-α-L-Araf-(1â, ß-D-Xylp-(1â, â2,3,4)-ß-D-Xylp-(1â, α-L-Rhap-(1â, ß-D-Galp-(1â, â4)-α-D-Galp-(1â, â6)-α-D-Galp-(1â, â6)-α-D-Glcp-(1â, â3,6)-α-D-Glcp-(1â, â6)-α-D-Manp-(1â, and â2,4)-ß-D-Manp-(1â residues. PTBP-1-3 decreased the production of NO, TNF-α, and IL-1ß in lipopolysaccharide-activated BV2 microglia cells in a manner similar to that of minocycline. In conclusion, PTBP-1-3 exhibited a potent inhibitory effect on neuroinflammation, and could be one of the bioactive ingredients in PTB for anti-neuroinflammation. PTB and PTBP-1-3 may be potential therapeutic agents for the treatment of AD.
Assuntos
Polygala , Álcalis , Animais , Lipopolissacarídeos/farmacologia , Minociclina , Polygala/química , Polissacarídeos/química , Ratos , Fator de Necrose Tumoral alfaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Radix Polygalae, a commonly used traditional Chinese herb, has conventionally functioned in tranquilization and sedation, where anti-inflammation may be the underlying mechanism. AIM OF THE STUDY: Chronic restraint stress (CRS), a risk factor for the etiology of intestinal disorders, was used in the present study to examine whether Radix Polygalae extract (RPE) could modulate colonic dysfunction in CRS rats. MATERIALS AND METHODS: Wistar rats were exposed to 28-day CRS (6 h daily), and RPE (135 mg/kg and 270 mg/kg) was intragastrically administered 1 h before CRS. Subsequently, the gut microbiota was determined using metagenomic sequencing. Colonic proinflammatory interleukin-1ß, -6, and -18 were assayed using qRT-PCR and ELISA. Tight junction proteins were quantified by qRT-PCR and western blotting (WB), and tryptophan metabolic enzymes and metabolites were determined using qRT-PCR and UFLC-QTRAP-5500/MS. Moreover, protein expression of colonic tight junction proteins, NF-κB-NLRP3 signaling involved in the underlying mechanism of RPE were detected by WB. RESULTS: RPE significantly decreased proinflammatory cytokines and reshaped the gut microbiota, especially the probiotics, including Lactobacillus and Bacteroides. Moreover, RPE could modulate the metabolite contents and enzyme expression associated with colonic tryptophan-kynurenine (TRP-KYN) metabolism and could increase tight junction protein expression in CRS rats. Furthermore, RPE inhibited the activation of NF-κB-NLRP3 signaling in the colon of CRS rats. CONCLUSION: RPE could modulate colonic inflammation, colonic microbiota, tight junction, TRP-KYN metabolism and NF-κB-NLRP3 signaling to reach a colonic balance of CRS rats. The present study helped us to better understand and appreciate the various beneficial effects of RPE.
Assuntos
NF-kappa B , Triptofano , Animais , Colo/metabolismo , Medicamentos de Ervas Chinesas , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Wistar , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Triptofano/metabolismoRESUMO
Alzheimer's disease is a common neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. Aerial parts of Polygala tenuifolia Willd (APT) is a traditional Chinese medicine used for the treatment of amnesia. The present study aimed to investigate the protective effects of APT on scopolamine-induced learning and memory impairments in mice. Scopolamine-induced mice were used to determine the effects of APT on learning and memory impairment. Mice were orally administered with APT (25, 50 and 100 mg/kg) and piracetam (750 mg/kg) for 14 days, and intraperitoneally injected with scopolamine (2 mg/kg) from days 8 to 14. Morris water maze and step-down tests were performed to evaluate learning and memory. Levels of acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase (AChE), interleukin (IL)-1ß, IL-10 and brain-derived neurotrophic factor (BDNF) in the hippocampus and frontal cortex were measured by ELISA. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were measured via biochemical detection. The results demonstrated that APT ameliorated learning and memory impairment in scopolamine-induced mice. Correspondingly, APT significantly increased ACh and ChAT levels in the hippocampus and prefrontal cortex of scopolamine-induced mice. Additionally, treatment with APT significantly increased BDNF and IL-10 levels, and decreased IL-1ß and AChE levels in the same mice. Furthermore, APT significantly increased SOD activity and GSH content, and decreased MDA levels in brain tissue. These results indicated that APT may ameliorate learning and memory impairment by regulating cholinergic activity, promoting BDNF and inhibiting neuroinflammation and oxidative stress.
RESUMO
Polygala tenuifolia Willd. is an important protected species used in traditional Chinese medicine. In the present study, amplified fragment length polymorphism (AFLP) markers were employed to characterize the genetic diversity in wild and cultivated P. tenuifolia populations. Twelve primer combinations of AFLP produced 310 unambiguous and repetitious bands. Among these bands, 261 (84.2%) were polymorphic. The genetic diversity was high at the species level: percentage of polymorphic loci (PPL)=84.2%, Nei's gene diversity (h)=0.3296 and Shannon's information index (I)=0.4822. Between the two populations, the genetic differentiation of 0.1250 was low and the gene flow was relatively high, at 3.4989. The wild population (PPL=81.9%, h=0.3154, I=0.4635) showed a higher genetic diversity level than the cultivated population (PPL=63.9%, h=0.2507, I=0.3688). The results suggest that the major factors threatening the persistence of P. tenuifolia resources are ecological and human factors rather than genetic. These results will assist with the design of conservation and management programs, such as in natural habitat conservation, setting the excavation time interval for resource regeneration and the substitution of cultivated for wild plants.
Assuntos
Variação Genética , Polygala/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , China , Fluxo Gênico , Filogenia , Polimorfismo GenéticoRESUMO
Atopic dermatitis (AD) and stress create a vicious cycle: stress exacerbates atopic symptoms, and atopic disease elicits stress and anxiety. Targeting multiple pathways including stress and allergic inflammation is, therefore, important for treating AD. In this study, we investigated the remedial value of Polygala tenuifolia Willd. (PTW) for treating immobilization (IMO) stress-exacerbated atopy-like skin dermatitis and its underlying mechanism. Trimellitic anhydride (TMA) was applied to dorsal skin for sensitization and subsequently both ears for eliciting T-cell-dependent contact hypersensitivity in mice, which underwent 2 h-IMO stress and PTW administration for the latter 6 and 9 days in the ear exposure period of TMA, respectively. To elicit in vitro degranulation of human mast cell line-1 (HMC-1), 10 µM substance P (SP) and 200 nM corticotrophin-releasing factor (CRF) were sequentially added with 48 h-interval. PTW extract (500 µg/mL) was added 30 min before CRF treatment. IMO stress exacerbated TMA-induced scratching behavior by 252%, and increased their blood corticosterone levels by two-fold. Treatment with 250 mg/kg PTW significantly restored IMO stress-exacerbated scratching behavior and other indicators such as skin inflammation and water content, lymph node weights, and serum histamine and immunoglobulin E (lgE) levels. Furthermore, it also reversed TMA-stimulated expression of tumor necrosis factor (TNF)-α and interleukin (IL)-4 mRNAs in ear tissues. PTW significantly inhibited SP/CRF-stimulated degranulation of HMC-1 cells, subsequent tryptase secretion, and protein kinase A (PKA) activity. PTW also selectively inhibited p38 mitogen-activated protein kinase (MAPK) phosphorylation in SP/CRF-treated HMC-1 cells. PTW significantly inhibited HMC-1 cell degranulation and alleviated IMO stress-exacerbated atopic dermatitis symptoms by modulating the PKA/p38 MAPK signaling pathway.