Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Plant Physiol Biochem ; 214: 108924, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991593

RESUMO

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.

2.
Front Bioeng Biotechnol ; 12: 1412927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974658

RESUMO

Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.

3.
New Phytol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978318

RESUMO

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.

4.
Front Plant Sci ; 15: 1422701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984158

RESUMO

Drought is a major factor affecting crops, thus efforts are needed to increase plant resilience to this abiotic stress. The overlapping signaling pathways between drought and cell wall integrity maintenance responses create a possibility of increasing drought resistance by modifying cell walls. Here, using herbaceous and woody plant model species, Arabidopsis and hybrid aspen, respectively, we investigated how the integrity of xylan in secondary walls affects the responses of plants to drought stress. Plants, in which secondary wall xylan integrity was reduced by expressing fungal GH10 and GH11 xylanases or by affecting genes involved in xylan backbone biosynthesis, were subjected to controlled drought while their physiological responses were continuously monitored by RGB, fluorescence, and/or hyperspectral cameras. For Arabidopsis, this was supplemented with survival test after complete water withdrawal and analyses of stomatal function and stem conductivity. All Arabidopsis xylan-impaired lines showed better survival upon complete watering withdrawal, increased stomatal density and delayed growth inhibition by moderate drought, indicating increased resilience to moderate drought associated with modified xylan integrity. Subtle differences were recorded between xylan biosynthesis mutants (irx9, irx10 and irx14) and xylanase-expressing lines. irx14 was the most drought resistant genotype, and the only genotype with increased lignin content and unaltered xylem conductivity despite its irx phenotype. Rosette growth was more affected by drought in GH11- than in GH10-expressing plants. In aspen, mild downregulation of GT43B and C genes did not affect drought responses and the transgenic plants grew better than the wild-type in drought and well-watered conditions. Both GH10 and GH11 xylanases strongly inhibited stem elongation and root growth in well-watered conditions but growth was less inhibited by drought in GH11-expressing plants than in wild-type. Overall, plants with xylan integrity impairment in secondary walls were less affected than wild-type by moderately reduced water availability but their responses also varied among genotypes and species. Thus, modifying the secondary cell wall integrity can be considered as a potential strategy for developing crops better suited to withstand water scarcity, but more research is needed to address the underlying molecular causes of this variability.

5.
Plant Physiol Biochem ; 214: 108944, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39033651

RESUMO

Anoplophora glabripennis (ALB) is one of the most devastating wood boring insects of poplars. Populus deltoides 'Shalinyang (PdS), a new poplar variety, shows strong resistance to ALB infestation. However, the molecular mechanism of insect resistance in PdS is unclear. Here, we found that lignan content was much higher in PdS phloem after ALB infestation than in healthy trees, and that adding lignan to artificial diet significantly reduced: larval weight; digestive enzyme activity (cellulase [CL], polygalacturonase [PG]); detoxification enzyme activity (carboxylesterase [CarE], glutathione S-transferase [GSH-ST]); and defense enzyme activity (Catalase [CAT]). We further identified the lignan biosynthesis-related PdPLR1 gene (Pinoresinol-lariciresinol reductase, PLR) based on transcriptome analysis, and it was significantly up-regulated in the PdS phloem attacked by ALB. Overexpression of PdPLR1 in Arabidopsis increased th lignan content. In contrast, silencing PdPLR1 in PdS significantly decreased expression levels of PdPLR1 and lignan content by 82.45% and 56.85%. However, silencing PdPLR1 increased the number of adults ovipositions and eggs hatching. The activity of CL, PG, CarE, GSH-ST and CAT and the biomass of larvae fed on phloem of PdS with silenced PdPLR1 were significantly higher than in the control. Taken together, up regulation of PdPLR1 enhanced PdS resistance to ALB by regulating lignan synthesis. Our findings provide in-depth insights into the molecular mechanisms of PdS-ALB interactions, which lay the foundation for understanding of defense in poplars to pest infection.

6.
BMC Genomics ; 25(1): 657, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956453

RESUMO

BACKGROUND: Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in plant growth and development as well as in response to environmental changes, by dynamically regulating gene acetylation levels. Although there have been numerous reports on the identification and function of HDAC and HAT in herbaceous plants, there are fewer report related genes in woody plants under drought stress. RESULTS: In this study, we performed a genome-wide analysis of the HDAC and HAT families in Populus trichocarpa, including phylogenetic analysis, gene structure, conserved domains, and expression analysis. A total of 16 PtrHDACs and 12 PtrHATs were identified in P. trichocarpa genome. Analysis of cis-elements in the promoters of PtrHDACs and PtrHATs revealed that both gene families could respond to a variety of environmental signals, including hormones and drought. Furthermore, real time quantitative PCR indicated that PtrHDA906 and PtrHAG3 were significantly responsive to drought. PtrHDA906, PtrHAC1, PtrHAC3, PtrHAG2, PtrHAG6 and PtrHAF1 consistently responded to abscisic acid, methyl jasmonate and salicylic acid under drought conditions. CONCLUSIONS: Our study demonstrates that PtrHDACs and PtrHATs may respond to drought through hormone signaling pathways, which helps to reveal the hub of acetylation modification in hormone regulation of abiotic stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases , Histona Desacetilases , Filogenia , Populus , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Populus/genética , Populus/enzimologia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Integr Plant Biol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031878

RESUMO

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.

8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
9.
Plant Sci ; 347: 112182, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019090

RESUMO

Photosynthesis is the main source of energy for plants to sustain growth and development. Abnormalities in photosynthesis may cause defects in plant development. The elaborate regulatory mechanism underlying photosynthesis remains unclear. In this study, we identified a natural mutant from the Greater Khingan Mountains and named it as "1-T". This mutant had variegated leaf with irregular distribution of yellow and green. Chlorophyll contents and photosynthetic capacity of 1-T were significantly reduced compared to other poplar genotypes. Furthermore, a transcriptome analysis revealed 3269 differentially expressed genes (DEGs) in 1-T. The products of the DEGs were enriched in photosystem I and photosystem II. Three motifs were significantly enriched in the promoters of these DEGs. Yeast one-hybrid, Electrophoretic mobility shift assays and tobacco transient transformation experiments indicated that PdGLKs may bind to the three motifs. Further analysis indicated that these photosystem related genes were also significantly down-regulated in PdGLK-RNAi poplars. Therefore, we preliminarily concluded that the down-regulation of PdGLKs in 1-T may affect the expression of photosystem-related genes, resulting in abnormal photosystem development and thus affecting the growth and development. Our results provide new insights into the molecular mechanism of photosynthesis regulating plant growth.

10.
Front Plant Sci ; 15: 1276489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022604

RESUMO

Introduction: Population-level competition and spatial patterns may explain the role of competitive exclusion in communities, which is important for vegetation restoration and biodiversity conservation. Methods: We analyzed the competitive intensity, spatial patterns, and renewal of Populus euphratica Oliv. forests in the Tarim River Basin using the Hegyi competition index and spatial point pattern analysis in a completely random model with different habitats and different forest ages. Results: The greatest competitive distance for P. euphratica was 10 m, and the intensity of competition steadily decreased as the diameter increased. The intensity of intraspecific and interspecific competition in young, mature, and old P. euphratica forests was as follows: riverside habitat > transitional habitat > desert margin habitat. The Simpson index values for the three habitats decreased as follows: transitional > riverside > desert margin, and the Shannon-Wiener index and Pielou index values decreased as follows: riverside > transitional > desert margin. In the riverside habitat, the young P. euphratica forest experienced the greatest competitive intensity, the mature forest in the transitional habitat was the largest, and the forest in the desert margin habitat was the oldest. Competitive intensity was greatest in the young riverside P. euphratica forest, mature P. euphratica forest in the transitional habitat, and old forest in the desert margin. Riverside P. euphratica experienced strong competition from Populus pruinosa. Competitive exclusion caused P. pruinosa to disappear from the transitional and desert margin habitats. Young, mature, and old P. euphratica forests were randomly distributed along the riverside and in the transitional habitat, while mature and old P. euphratica forests were randomly distributed in the desert margin. Populus pruinosa, Tamarix ramosissima, and Tamarix hispida were mainly randomly distributed, and T. ramosissima and T. hispida were clustered at small scales. In the riverside habitat, young, mature, and old P. euphratica had no spatial correlation, and there was a significant negative correlation at small scales in the transitional habitat. The density of P. euphratica seedlings in the riverside habitat was greater than that in the transitional habitat, and greater competitive pressures on P. euphratica tree seedlings caused a lower renewal density. Conclusions: When planting P. euphratica forests, spacing greater than 10 m can effectively reduce stand competition and thus promote seedling regeneration.

11.
Tree Physiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030690

RESUMO

Tension wood (TW) is a specialised xylem tissue associated with gravitropism in angiosperm trees. However, few regulators of TW formation have been identified. The molecular mechanisms underpinning TW formation remain elusive. Here, we report that a Populus KNOTTED-like homeobox gene, PagKNAT2/6b, is involved in TW formation and gravity response. Transgenic poplar plants overexpressing PagKNAT2/6b displayed more sensitive gravitropism than controls, as indicated by increased stem curvature. Microscopic examination revealed greater abundance of fibre cells with a gelatinous cell wall layer (G-layer) and asymmetric growth of secondary xylem in PagKNAT2/6b overexpression lines. Conversely, PagKNAT2/6b dominant repression plants exhibited decreased TW formation and reduced response to gravity stimulation. Moreover, sensitivity to gravity stimulation showed a negative relationship with development stage. Expression of genes related to growth and senescence was affected in PagKNAT2/6b transgenic plants. More importantly, transcription activation and electrophoretic mobility shift assays suggested that PagKNAT2/6b promotes the expression of cytokinin metabolism genes. Consistently, cytokinin content was increased in PagKNAT2/6b overexpression plants. Therefore, PagKNAT2/6b is involved in gravitropism and TW formation, likely via modulation of cytokinin metabolism.

12.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999598

RESUMO

Stand basal area (SBA) is an important variable in the prediction of forest growth and harvest yield. However, achieving the additivity of SBA models for multiple tree species in the complex structure of broad-leaved mixed forests is an urgent scientific issue in the study of accurately predicting the SBA of mixed forests. This study used data from 58 sample plots (30 m × 30 m) for Populus davidiana × Betula platyphylla broad-leaved mixed forests to construct the SBA basic model based on nonlinear least squares regression (NLS). Adjustment in proportion (AP) and nonlinear seemingly unrelated regression (NSUR) were used to construct a multi-species additive basal area prediction model. The results identified the Richards model (M6) and Korf model (M1) as optimal for predicting the SBA of P. davidiana and B. platyphylla, respectively. The SBA models incorporate site quality, stand density index, and age at 1.3 m above ground level, which improves the prediction accuracy of basal area. Compared to AP, NSUR is an effective method for addressing the additivity of basal area in multi-species mixed forests. The results of this study can provide a scientific basis for optimizing stand structure and accurately predicting SBA in multi-species mixed forests.

13.
Plants (Basel) ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999675

RESUMO

The bHLH transcription factor family plays crucial roles in plant growth and development and their responses to adversity. In this study, a highly salt-induced bHLH gene, PagbHLH35 (Potri.018G141600), was identified from Populus alba × P. glandullosa (84K poplar). PagbHLH35 contains a highly conserved bHLH domain within the region of 52-114 amino acids. A subcellular localization result confirmed its nuclear localization. A yeast two-hybrid assay indicated PagbHLH35 lacks transcriptional activation activity, while a yeast one-hybrid assay indicated it could specifically bind to G-box and E-box elements. The expression of PagbHLH35 reached its peak at 12 h and 36 h time points under salt stress in the leaves and roots, respectively. A total of three positive transgenic poplar lines overexpressing PagbHLH35 were generated via Agrobacterium-mediated leaf disk transformation. Under NaCl stress, the transgenic poplars exhibited significantly enhanced morphological and physiological advantages such as higher POD activity, SOD activity, chlorophyll content, and proline content, and lower dehydration rate, MDA content and hydrogen peroxide (H2O2) content, compared to wild-type (WT) plants. In addition, histological staining showed that there was lower ROS accumulation in the transgenic poplars under salt stress. Moreover, the relative expression levels of several antioxidant genes in the transgenic poplars were significantly higher than those in the WT. All the results indicate that PagbHLH35 can improve salt tolerance by enhancing ROS scavenging in transgenic poplars.

14.
New Phytol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837421
15.
J Exp Bot ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836523

RESUMO

DNA methylation is environment-sensitive and can mediate stress responses. In long-lived trees, changing environments might cumulatively shape the methylome landscape over their lifetime. However, because high-resolution methylome studies usually focus on single environmental cues, it remains unclear to what extent the methylation responses are generic or stress-specific, and how this relates to their long-term stability. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone that is widespread across Europe. Adult trees from a variety of geographic locations were clonally propagated in a common garden experiment, and the ramets were exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Through comprehensive whole-genome bisulfite sequencing, we analyzed stress-induced and naturally occurring DNA methylation variants. Stress-induced methylation changes predominantly targeted transposable elements. When occurring in CG/CHG contexts, the same regions were often affected by multiple stresses, suggesting a generic response of the methylome. Drought stress caused a distinct CHH hypermethylation response in transposable elements, affecting entire TE superfamilies near drought-responsive genes. Methylation differences in CG/CHG contexts that were induced by stress treatments showed striking overlap with methylation differences observed between trees from distinct geographical locations. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and we identified specific transposable element superfamilies that respond to a specific stress with possible functional consequences. Our results underscore the importance of studying the effects of multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.

16.
Front Plant Sci ; 15: 1375506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867883

RESUMO

Wood is the water conducting tissue of tree stems. Like most angiosperm trees, poplar wood contains water-conducting vessel elements whose functional properties affect water transport and growth rates, as well as susceptibility to embolism and hydraulic failure during water stress and drought. Here we used a unique hybrid poplar pedigree carrying genomically characterized chromosomal insertions and deletions to undertake a systems genomics analysis of vessel traits. We assayed gene expression in wood forming tissues from clonal replicates of genotypes covering dosage quantitative trait loci with insertions and deletions, genotypes with extreme vessel trait phenotypes, and control genotypes. A gene co-expression analysis was used to assign genes to modules, which were then used in integrative analyses to identify modules associated with traits, to identify putative molecular and cellular processes associated with each module, and finally to identify candidate genes using multiple criteria including dosage responsiveness. These analyses identified known processes associated with vessel traits including stress response, abscisic acid and cell wall biosynthesis, and in addition identified previously unexplored processes including cell cycle and protein ubiquitination. We discuss our findings relative to component processes contributing to vessel trait variation including signaling, cell cycle, cell expansion, and cell differentiation.

17.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847345

RESUMO

Shoot branching from axillary bud (AB) directly determines plant architecture. However, the mechanism through which AB remains dormant or emerges to form branches as plants grow remains largely unknown. Here, the auxin-strigolactone (IAA-SL) pathway was first shown to regulate shoot branching in poplar, and we found that PagKNAT2/6b could modulate this pathway. PagKNAT2/6b was expressed mainly in the shoot apical meristem and AB and was induced by shoot apex damage. PagKNAT2/6b overexpressing poplar plants (PagKNAT2/6b OE) exhibited multiple branches that mimicked the branching phenotype of nontransgenic plants after decapitation treatment, while compared with nontransgenic controls, PagKNAT2/6b antisense transgenic poplar and Pagknat2/6b mutant lines exhibited a significantly decreased number of branches after shoot apex damage treatment. In addition, we found that PagKNAT2/6b directly inhibits the expression of the key IAA synthesis gene PagYUC6a, which is specifically expressed in the shoot apex. Moreover, overexpression of PagYUC6a in the PagKNAT2/6b OE background reduced the number of branches after shoot apex damage treatment. Overall, we conclude that PagKNAT2/6b responds to shoot apical injury and regulates shoot branching through the IAA-SL pathway. These findings may provide a theoretical basis and candidate genes for genetic engineering to create new forest tree species with different crown types.

18.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1187-1195, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886416

RESUMO

Populus euphratica is an important tree species in the arid regions of Northwest China, which is sensitive to climate changes. Climate of the Northwest China is changing to be "warm and humid", but how it would affect the regional forest growth is not clear. In this study, the radial growth response of P. euphratica to major climatic factors and their temporal changes during 1984-2021 were analyzed by using dendrochronology method in the desert oasis ecotone of Cele in the southern Tarim basin. The results showed that tree-ring width index of P. euphratica had a significant negative correlation with temperature in September of the previous year, and in February and May of current year, had significant positive correlation with precipitation in September of previous year and March and May of current year, and had significant positive correlations with SPEI in February and May of current year. The relationships between tree-ring width index and combined month climatic factors were more obvious. The results of moving correlation analysis showed that the correlation between tree-ring width index and temperature in the growing season tended to be strengthened in recent years, while the correlation between tree-ring width index and precipitation, SPEI tended to be declined or remain stable. The variations of the relationships between tree-ring width index and combined month climatic factors were more obvious compared that with single month. Current regional climate is conducive to the growth and development, as well as the improvement of ecological shelter function of P. euphratica forest in the desert oasis ecotone of Cele.


Assuntos
Mudança Climática , Clima Desértico , Ecossistema , Populus , Populus/crescimento & desenvolvimento , China , Temperatura
19.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892311

RESUMO

Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.


Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Herbivoria , Mariposas , Populus , Transcriptoma , Populus/genética , Populus/parasitologia , Populus/metabolismo , Animais , Afídeos/fisiologia , Mariposas/fisiologia , Mariposas/genética , Metabolômica/métodos , Perfilação da Expressão Gênica , Metaboloma
20.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878333

RESUMO

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Assuntos
Chuva Ácida , Cádmio , Nitrogênio , Populus , Rizosfera , Plântula , Microbiologia do Solo , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Populus/efeitos dos fármacos , Populus/microbiologia , Populus/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Nitrogênio/análise , Solo/química , Microbiota/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA