Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Anal Sens ; 4(3)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827423

RESUMO

Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.

2.
J Pharm Biomed Anal ; 248: 116293, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901154

RESUMO

A method of analysis was developed for the simultaneous chemo- and enantioseparation of 2-, 3-, and 4-chloromethcathinones by high-performance liquid chromatography tandem mass-spectrometry. The fast method enables the reliable identification of positional isomers of chloromethcathinones in biological samples. In addition, the same method can be used for the enantioselective quantitative determination of one of these compounds and its major phase-1 metabolites in biological fluids. The developed method was applied to oral fluid samples collected by police during routine random traffic control in Belgium from January to November, 2023. It was found that 3-CMC was more frequently abused compared to 4-CMC. Although some differences were observed between the concentrations of enantiomers in OF, most likely the drugs were abused in the racemic form. No abuse of 2-CMC was detected at the timepoint of sample collection.


Assuntos
Saliva , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Saliva/química , Estereoisomerismo , Propiofenonas/química , Propiofenonas/análise , Detecção do Abuso de Substâncias/métodos , Bélgica
3.
J Proteome Res ; 23(8): 3318-3321, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421884

RESUMO

Proteoforms, the different forms of a protein with sequence variations including post-translational modifications (PTMs), execute vital functions in biological systems, such as cell signaling and epigenetic regulation. Advances in top-down mass spectrometry (MS) technology have permitted the direct characterization of intact proteoforms and their exact number of modification sites, allowing for the relative quantification of positional isomers (PI). Protein positional isomers refer to a set of proteoforms with identical total mass and set of modifications, but varying PTM site combinations. The relative abundance of PI can be estimated by matching proteoform-specific fragment ions to top-down tandem MS (MS2) data to localize and quantify modifications. However, the current approaches heavily rely on manual annotation. Here, we present IsoForma, an open-source R package for the relative quantification of PI within a single tool. Benchmarking IsoForma's performance against two existing workflows produced comparable results and improvements in speed. Overall, IsoForma provides a streamlined process for quantifying PI, reduces the analysis time, and offers an essential framework for developing customized proteoform analysis workflows. The software is open source and available at https://github.com/EMSL-Computing/isoforma-lib.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem , Humanos , Isomerismo , Espectrometria de Massa com Cromatografia Líquida/métodos , Isoformas de Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
4.
Drug Test Anal ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263625

RESUMO

Among N-((2-substituted)benzyl)phenylethanamines, N-(2-hydroxybenzyl)phenylethanamines are a special type of compounds which are thermolabile and degrade in the course of analysis by means of gas chromatography-mass spectrometry (GC-MS). This can lead to substantial errors, in the identification of legally controlled compounds of this series containing methoxy groups at positions 2 and 5 of the benzene ring of the phenylethyl fragment by GC-MS, which is commonly used in forensic and toxicological laboratories. Exemplified by the five isomeric 2-(dimethoxyphenyl)-N-(2-hydroxybenzyl)ethanamines, it was shown that their derivatization with trifluoroacetic anhydride (same as in the case of the N-(2-methoxybenzyl)-, N-(2-fluorobenzyl)-, N-(2-chlorobenzyl)-, and N-(2-bromobenzyl)substitutes phenylethanamines [NBOMe, NBF, NBCl, and NBBr, respectively] series described earlier) results in only one product, N-monosubstituted derivative, for each positional isomer within a series, which makes it possible to reliably identify each compound by the GC-MS method. In addition, chromatographic conditions for sufficient separation of trifluoroacetyl derivatives of these positional isomers of the NBOH series in 25 min are proposed, which is an important aspect for analysis in forensic laboratories engaged in the determination of narcotic drugs and new psychoactive substances. As an alternative approach, a method for identifying positional isomers of the NBOH series by the high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) method without derivatization is proposed.

5.
J Chromatogr A ; 1715: 464630, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38184990

RESUMO

The identification of positional isomers is of interest because different isomers have different chemical or biological functions and applications. The analysis of positional isomers is sometimes challenging since they have similar chemical structures and properties. For example, the analysis of mass cannot identify different positional isomers because they have identical mass-to-charge ratios and show a single mass peak in mass spectrometry. In this study, an efficient and simple qualitative and quantitative analytical method for differentiating 2,2'-bipyridine-3,3'-dicarboxylic acid (3,3'-BDA), 2,2'-bipyridine-4,4'-dicarboxylic acid (4,4'-BDA), and 2,2'-bipyridine-5,5'-dicarboxylic acid (5,5'-BDA) was developed by using ion mobility spectrometry (IMS). The results revealed that the three BDA isomers formed non-covalent complexes with cyclodextrins (CDs) and Mg2+ ions in the gas phase: [ß-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ and [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+, which were distinguished by measuring the mobility of the complexes because of their spatial conformational differences. The peak-to-peak resolution (Rp-p) values of the three isomers of [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ reached 2.983 and 2.892, respectively. The conformations of the ternary complexes simulated by the theoretical calculations revealed the different interactions and shapes of the stereoisomers, and the predicted results agreed with the experimental results. Simultaneously, further studies on the collisional dissociation of the ternary complexes revealed that the dissociation energies of the different complex ions varied were different owing to the diverse different conformations. Finally, the relative quantitative analysis of the different isomers in mixed samples was performed and satisfactory linearity results (R2 > 0.99) were obtained. Thus, an effective analytical method was proposed for the identification and quantification of BDA isomers without chemical derivatization, offering a promising approach for the identification of similar derivatives or positional isomers that could be applied in various fields including chemicals and pharmaceuticals.


Assuntos
2,2'-Dipiridil , Espectrometria de Mobilidade Iônica , Isomerismo , Espectrometria de Massas , Íons/química
6.
Anal Bioanal Chem ; 416(5): 1293-1305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189918

RESUMO

The rising crime rate associated with document forgery has a significant impact on public safety and social stability. In document fraud cases, determining the origin of a particular stamp-pad ink is the most important objective. In this study, a comprehensive analysis of the volatile compounds in quick-drying stamp-pad inks from six commonly used brands were performed for the first time, utilizing a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and multivariate statistical analysis methods. Visual and comparative analysis of the differential volatile components among different stamp-pad ink samples was conducted using fingerprints and volcano plots. A total of 127 volatile compounds were accurately identified, with ketones, esters, alcohols, and aldehydes being the most abundant compounds in the stamp-pad inks. Hierarchical clustering analysis (HCA), including dendrograms and clustering heatmaps, was utilized to explore the correlations between these compounds and the samples. Additionally, the precise identification of positional isomers and functional group isomers of aliphatic compounds was achieved. To achieve accurate discrimination of various stamp-pad ink samples, a multivariate statistical analysis method was utilized to establish a classification model for them. Based on the results obtained from HS-GC-IMS, effective discrimination among different brands of stamp-pad ink samples was achieved through principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The model exhibited excellent performance, with the fit index of dependent variables (R2Y) and the predictive index of the model (Q2) values of 0.99 and 0.984, respectively. These results provided significant theoretical evidence for the application of HS-GC-IMS as an efficient technique in the analysis of volatile compounds, identification of positional isomers and functional group isomers, as well as tracing the origin of stamp-pad ink and analyzing the formation time of documents.

7.
Anal Chim Acta ; 1283: 341962, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977786

RESUMO

Over the last decade, a remarkable number of new psychoactive substances (NPS) have emerged onto the drug market, resulting in serious threats to both public health and society. Despite their abundance and potential toxicity, there is little information available on their metabolism, a crucial piece of information for clinical and forensic purposes. NPS metabolism can be studied using in vitro models, such as liver microsomes, cytosol, hepatocytes, etc. The tentative structural elucidation of metabolites of NPS formed using in vitro models is typically carried out using liquid chromatography combined with high-resolution tandem mass spectrometry (LC-HRMS2) with collision-induced dissociation (CID) as a fragmentation method. However, the thermally-excited ions produced with CID may not be sufficient for unambiguous identification of metabolites or their complete characterization. Electron-activated dissociation (EAD), a relatively new fragmentation approach that can be used to fragment singly-charged ions, may provide complementary structural information that can be used to further improve the confidence in metabolite identification. The aim of this study was to compare CID and EAD as fragmentation methods for the characterization and identification of synthetic cathinone positional isomers and their metabolites. The in vitro metabolism of 2-methylethcathinone (2-MEC), 3-methylethcathinone (3-MEC) and 4-methylethcathinone (4-MEC) was investigated with both CID and EAD methods using LC-HRMS2. Four, seven and six metabolites were tentatively identified for the metabolism of 2-MEC, 3-MEC and 4-MEC, respectively. Here, the metabolism of 3-MEC and 2-MEC is reported for the first time. The EAD product ion mass spectra showed different fragmentation patterns compared to CID, where unique and abundant product ions were observed in EAD but not in CID. More importantly, certain EAD exclusive product ions play a significant role in structural elucidation of some metabolites. These results highlight the important role that EAD fragmentation can play in metabolite identification workflows, by providing additional fragmentation data compared with CID and, thus, enhancing the confidence in structural elucidation of drug metabolites.


Assuntos
Elétrons , Catinona Sintética , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Íons/análise
8.
Small ; 19(48): e2303897, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37533408

RESUMO

Humidity is one of the most important indicators affecting human health. Here, a pair of covalent organic frameworks (COFs) of positional isomers (p-COF and o-COF) for indoor humidity regulation is reported. Although p-COF and o-COF have the same sql topology and pore size, they exhibit different water adsorption behaviors due to the subtle differences in water adsorption sites. Particularly, o-COF exhibits a steep adsorption isotherm in the range of 45-65% RH with a hysteresis loop, which is perfectly suitable for indoor humidity regulation. In the laboratory experiment, when the humidity of the external environment is 20-75% RH, o-COF can control the humidity of the room in the range of 45-60% RH. o-COF has shown great potential as a dual humidification/dehumidification adsorbent for indoor humidity regulation.

9.
J Biomed Opt ; 28(8): 082807, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37427335

RESUMO

Significance: Carbon dots (CDs) have attracted a host of research interest in recent years mainly due to their unique photoluminescence (PL) properties that make them applicable in various biomedical areas, such as imaging and image-guided therapy. However, the real mechanism underneath the PL is a subject of wide controversy and can be investigated from various angles. Aim: Our work investigates the effect of the isomeric nitrogen position as the precursor in the synthesis of CDs by shedding light on their photophysical properties on the single particles and ensemble level. Approach: To this end, we adopted five isomers of diaminopyridine (DAP) and urea as the precursors and obtained CDs during a hydrothermal process. The various photophysical properties were further investigated in depth by mass spectroscopy. CD molecular frontier orbital analyses aided us in justifying the fluorescence emission profile on the bulk level as well as the charge transfer processes. As a result of the varying fluorescent responses, we indicate that these particles can be utilized for machine learning (ML)-driven sensitive detection of oral microbiota. The sensing results were further supported by density functional theoretical calculations and docking studies. Results: The generating isomers have a significant effect on the overall photophysical properties at the bulk/ensembled level. On the single-particle level, although some of the photophysical properties such as average intensity remained the same, the overall differences in brightness, photo-blinking frequency, and bleaching time between the five samples were conceived. The various photophysical properties could be explained based on the different chromophores formed during the synthesis. Overall, an array of CDs was demonstrated herein to achieve ∼100% separation efficacy in segregating a mixed oral microbiome culture in a rapid (<0.5 h), high-throughput manner with superior accuracy. Conclusions: We have indicated that the PL properties of CDs can be regulated by the precursors' isomeric position of nitrogen. We emancipated this difference in a rapid method relying on ML algorithms to segregate the dental bacterial species as biosensors.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Corantes Fluorescentes/química , Carbono , Aminas , Imagem Óptica , Nitrogênio , Pontos Quânticos/química
10.
J Sep Sci ; 46(18): e2300269, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439001

RESUMO

To expand the application of pillararene in chromatographic separation, we designed and fabricated a pillar[5]quinone-amine polymer coated silica through quinone-amine reaction by facile one-pot synthesis method, which was applied as a stationary phase for high-performance liquid chromatography. Separation of hydrophobic compounds, hydrophilic compounds, halogenated aromatic compounds, and 11 aromatic positional isomers was achieved successfully in this stationary phase. Reverse-phase separation mode and hydrophilic-interaction separation mode were proved to exist, indicating the potential application of the mix-mode stationary phase. Studies of chromatographic retention behavior and molecular simulation showed that multiple interactions might play an important role in the separation process, including hydrophobic interaction, hydrogen-bonding interaction, aromatic π-π interaction, electron donor-acceptor interaction, and host-guest interaction. Column repeatability and stability were tested, which showed relative standard deviations of retention time less than 0.2% for continuous 11 injections, and the durability relative standard deviations of retention time were less than 0.91% after 90 days. This novel design strategy would broaden the application of pillararene-based covalent organic polymer in chromatography and separation science.

11.
Anal Bioanal Chem ; 415(22): 5403-5420, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452840

RESUMO

Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.


Assuntos
Alcaloides , Espectrometria de Massas em Tandem , Ratos , Masculino , Humanos , Feminino , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Alcaloides/análise , Fígado/química , Microssomos Hepáticos/metabolismo
12.
Front Chem ; 11: 1209428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448855

RESUMO

A single crystal X-ray diffraction analysis was performed on two positional isomers (m-tolyl and p-tolyl) of acrylonitrile derivatives, namely, (Z)-3-(4-(pyridin-2-yl) phenyl)-2-(m-tolyl) acrylonitrile (1) and (Z)-3-(4-(pyridin-2-yl)phenyl)-2-(p-tolyl) acrylonitrile (2). Compound 1 crystallized in the monoclinic P21/n space group with two crystallographically independent molecules. Compound 2 also possesses two crystallographically independent molecules and crystallized in the triclinic P-1 space group. The Hirshfeld surface analysis revealed that, in both isomers, intermolecular H⋅⋅⋅H/C/N contacts contribute significantly to the crystal packing. More than 40% of the contribution arises from intermolecular C-H⋅⋅⋅C(π) contacts. In both compounds, the relative contribution of these contacts is comparable, indicating that the positional isomeric effects are marginal. The structures in which these isomers are arranged in the solid state are very similar, and the lattice energies are also comparable between the isomers. The Coulomb-London-Pauli-PIXEL (CLP-PIXEL) energy analysis identified the energetically significant dimers. The strength of the intra- and intermolecular interactions was evaluated using the quantum theory of atoms in molecules approach. The UV-Vis absorbance in three different solvents (chloroform, ethanol, and ethyl acetate) for isomers 1 and 2 are very similar. This result is in good agreement with the time-dependent density-functional theory (TD-DFT) calculations.

13.
J Forensic Sci ; 68(5): 1504-1519, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310108

RESUMO

Synthetic opioids such as fentanyl account for over 71,000 of the approximately 107,000 overdose deaths reported in the United States in 2021. Fentanyl remains the fourth most identified drug by state and local forensic laboratories, and the second most identified drug by federal laboratories. The unambiguous identification of fentanyl-related substances (FRS) is challenging due to the absence or low abundance of a molecular ion in a typical gas chromatography-mass spectrometry (GC-MS) analysis and due to a low number of fragment ions that are similar among the many potential isomers of FRS. This study describes the utility of a previously reported gas chromatography-infrared (GC-IR) library for the identification of FRS within a blind, interlaboratory study (ILS) involving seven forensic laboratories. Twenty FRS reference materials, including those with isomer pairs in the library, were selected based on either their presence in the NIST library and/or some similarity of the mass spectra information produced. The ILS participants were requested to use the Florida International University (FIU) GC-MS and GC-IR libraries supplied by FIU to search for matches to their unknown spectra generated from in-house GC-MS and GC-IR analysis. The laboratories reported improvement in the positive identification of unknown FRS from ~75% using GC-MS alone to 100% correct identification using GC-IR analysis. One laboratory participant used solid phase IR analysis, which produced spectra incompatible with the vapor phase GC-IR library to generate a good comparison spectrum. However, this improved when searched against a solid phase IR library.


Assuntos
Fentanila , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Isomerismo , Análise Espectral
14.
Biosci Biotechnol Biochem ; 86(12): 1670-1679, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36085182

RESUMO

The major quercetin metabolite, quercetin-3-glucuronide, exerts various biological activities, including anti-inflammatory effects. This study aimed to evaluate the metabolic profiles and biological properties of the positional isomers of quercetin monoglucuronides (Q3G, Q7G, Q3'G, and Q4'G) in activated macrophages. In addition to quercetin aglycone, Q7G was more cytotoxic than the other quercetin monoglucuronides (QGs), which corresponded to its lower stability under neutral pH conditions. Q3G was most effective in inhibiting both LPS-dependent induction of IL-6 and RANKL-dependent activation of tartrate-resistant acid phosphatase; however, Q3'G and Q4'G may also help exert biological activities without potential cytotoxicity. The deconjugation efficacy to generate quercetin aglycone differed among QGs, with the highest efficacy in Q3G. These results suggest that the chemical or biological properties and metabolic profiles may depend on the stability of QGs to generate quercetin aglycone using ß-glucuronidase.


Assuntos
Glucuronídeos , Quercetina , Camundongos , Animais , Quercetina/química , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Células RAW 264.7
15.
J Pharm Biomed Anal ; 221: 115067, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179504

RESUMO

In this study a quantitative 31P nuclear magnetic resonance (31P NMR) spectroscopy method was described to determine positional isomeric impurity ß-GPC in commercial products of L-α-GPC. The samples were dissolved in D2O and trimethyl phosphate (TMP) was selected as an internal calibrant. The measurements were performed on a Bruker 500 MHz spectrometer and the spectra were recorded under optimized process conditions. A good linear relationship was constructed for ß-GPC in the range of 62.7-528.0 µg·mL-1, i.e. 0.03-0.25 % (w/w %, in relative to L-α-GPC) with a correlative coefficient of 0.9996. The limit of quantification (LOQ) and limit of detection (LOD) were 62.7 µg·mL-1 and 20.9 µg·mL-1 with signal to noise of 3 and 10, respectively. The spiked recoveries were in the range of 98.17-99.78 % with the relative standard deviation (RSD %) less than 1.0 %. Therefore, it could be supposed that the 31P NMR was a promising alternative method for sensitive determination of ß-GPC for strict quality control of L-α-GPC.


Assuntos
Glicerilfosforilcolina , Imageamento por Ressonância Magnética , Limite de Detecção , Espectroscopia de Ressonância Magnética , Controle de Qualidade
16.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014520

RESUMO

Despite the importance of the insight about the oxidation mechanisms (i.e., radical and singlet oxygen (1O2) oxidation) in extra virgin olive oil (EVOO), the elucidation has been difficult due to its various triacylglycerol molecular species and complex matrix. This study tried to evaluate the mechanisms responsible for EVOO oxidation in our daily use by quantitative determination of triacylglycerol hydroperoxide (TGOOH) isomers using LC-MS/MS. The standards of dioleoyl-(hydroperoxy octadecadienoyl)-triacylglycerol and dioleoyl-(hydroperoxy octadecamonoenoyl)-triacylglycerol, which are the predominant TGOOHs contained in EVOO, were prepared. Subsequently, fresh, thermal-, and photo-oxidized EVOO were analyzed. The obtained results mostly agreed with the previously reported characteristics of the radical and 1O2 oxidation of linoleic acid and oleic acid. This suggests that the methods described in this paper should be valuable in understanding how different factors that determine the quality of EVOO (e.g., olive species, cultivation area, cultivation timing, and extraction methods) contribute to its oxidative stability.


Assuntos
Peróxido de Hidrogênio , Espectrometria de Massas em Tandem , Cromatografia Líquida , Azeite de Oliva/análise , Triglicerídeos
17.
Talanta ; 250: 123703, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839609

RESUMO

In the present work, we have reported the design of three different positional isomers of anthraimidazoledione-based charge transfer probes and their anion-binding properties under various conditions. In the acetonitrile medium, the meta isomer showed ratiometric optical response towards basic anions, such as F-, CN-, AcO- and H2PO4-. Based on the differences in the hydrogen bonding ability of these anions, we observed distinguishable output signal, particularly in fluorescence. Though meta and para isomers showed effective interaction with anions, the response was relatively weak for the ortho isomer. We suspected that the presence intramolecular hydrogen bond between pyridine nitrogen and imidazole -NH group might be responsible for such poor performance. Further, we have employed two different strategies to improve the selectivity towards anions. In the first case, selective recognition of anions was achieved using suitable metal ions (Cu2+, Zn2+, Ca2+, and Al3+) as masking agents. On the contrary, we have varied the water content (0, 10, 30 and 50% v/v) in the acetonitrile-water mixture in the second case. The anions with relatively large hydration enthalpy showed no detectable interaction with probe in presence of water. Finally, we used the present system to detect cyanide ion in various natural water samples (tap, pond, and seawater). Also, low-cost reusable paper strips were developed as an alternative method for rapid, on-location detection of CN- ions.


Assuntos
Cianetos , Água , Acetonitrilas , Ânions/química , Cianetos/análise , Imidazóis/química , Nitrogênio , Piridinas , Água/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-35594802

RESUMO

The fractionation of positional isomers of a PEGylated protein is quite challenging as these have similar molecular weight, and only very slightly different surface charge. In this study, cation exchange z2 laterally-fed membrane chromatography (z2LFMC), which has been shown to be suitable for high-speed, high-resolution protein purification, was used to fractionate positional isomers of mono-PEGylated lysozyme. The performance of the z2LFMC device was compared with a commercial preparative cation exchange column having the same volume and ligand. PEGylated lysozyme purification experiments showed that while the positional isomers of mono-PEGylated lysozyme could not be satisfactorily resolved using the preparative commercial cation exchange column, almost baseline resolution of these could be achieved using the z2LFMC device. Moreover, the z2LFMC device-based process was faster by an order of magnitude. The results discussed in this paper demonstrate that z2LFMC is a superior alternative to column-based chromatography for challenging protein separations, such as the one discussed here, both in terms of speed and resolution.


Assuntos
Muramidase , Polietilenoglicóis , Cromatografia por Troca Iônica/métodos , Peso Molecular , Polietilenoglicóis/química , Proteínas/química
19.
Drug Test Anal ; 14(6): 1102-1115, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35106940

RESUMO

N-(2-substituted benzyl)-2,5-dimethoxyphenethylamines often cause severe poisonings which has led to their legal prohibition in many countries. At the same time, their positional isomers can be studied as potential therapeutic drugs. In this regard, the search for various approaches to differentiate these isomers is an important practical task, the solution of which would guarantee from identification errors during laboratory analysis. In this paper, the possibilities of differentiation of isomers varying in the position of two methoxy groups in the phenylethyl part of the molecule are considered on the example of compounds of NBF, NBCl, and NBBr series by chromatography-mass spectrometry methods. Gas or liquid reverse-phase chromatography in the proposed chromatographic separation modes has demonstrated their ability to resolve this problem reliably. Data on retention indices of isomeric compounds and their derivatives can serve as an additional identification criterion for gas chromatography-mass spectrometry (GC-MS) analysis. Differentiation of NBF and NBCl isomers using electron ionization (EI) mass spectra is feasible only if both the spectrum of the compound and its N-trifluoroacetyl derivative are registered; differentiation of NBBr positional isomers under these conditions does not require obtaining the derivatives. Using electrospray ion source, the compounds can easily be differentiated based on the distinctive features of their collision induced dissociation (CID) spectra recorded at low energy values, which also does not require the synthesis of derivatives. The data presented in current paper will be useful for analysis in laboratories providing the determination of narcotic drugs.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isomerismo , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
ACS Appl Mater Interfaces ; 14(7): 9754-9762, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34990552

RESUMO

Vigorously developing new stationary phases to meet the requirements for the separation of positional isomers that have similar physicochemical properties is still an urgent topic in separation science. Herein, a single-crystalline covalent organic framework (COF-300) packed column for the separation of positional isomers in high-performance liquid chromatography (HPLC) was reported for the first time. Benefitting from its regular shape, excellent chemical and thermal stability, microporous feature, and strong hydrophobicity of single-crystalline COF-300, the single-crystalline COF-300-packed column showed excellent resolution for the separation of positional isomers, including nitroaniline, dichlorobenzene, dibromobenzene, diiodobenzene, diethylbenzene, chloronitrobenzene, bromonitrobenzene, and iodonitrobenzene isomers, which cannot be all separated on commercial columns and a polycrystalline COF-300-packed column. Especially, the resolution values for m-/p-diiodobenzene and o-/m-diiodobenzene were 4.45 and 2.53. Moreover, the alkylbenzene, monosubstituted aromatics, polycyclic aromatic hydrocarbons, and the mixture of ethylbenzene and styrene were also baseline separated on the single-crystalline COF-300-packed column. This successful application not only confirmed the great potential of single-crystalline COFs in HPLC separation of positional isomers but also pioneered the utilization of single-crystalline COFs in separation science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA