Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Adv Sci (Weinh) ; : e2309871, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572674

RESUMO

The rapid development of the Internet of Things has triggered a huge demand for self-sustained technology that can provide a continuous electricity supply for low-power electronics. Here, a self-sustained power supply solution is demonstrated that can produce a 24 h continuous and unipolar electricity output based on thermoelectric devices by harvesting the environmental temperature difference, which is ingeniously established utilizing radiation cooling and selective photothermal conversion. The developed prototype system can stably maintain a large temperature difference of about 1.8 K for a full day despite the real-time changes in environmental temperature and solar radiation, thereby driving continuous electricity output using the built-in thermoelectric device. Specifically, the large output voltage of >102 mV and the power density of >4.4 mW m-2 could be achieved for a full day, which are outstanding among the 24 h self-sustained thermoelectric devices and far higher than the start-up values of the wireless temperature sensor and also the light-emitting diode, enabling the 24 h remote data transmission and lighting, respectively. This work highlights the application prospects of self-sustained thermoelectric devices for low-power electronics.

2.
Environ Sci Pollut Res Int ; 31(20): 30243-30255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602640

RESUMO

The development of renewable energy is indispensable to promoting the low-carbon transition of power systems. Nevertheless, it also brings uncertainty to the reliability of power systems. Herein, the panel model and panel threshold model are established based on the provincial data in China from 2012 to 2020. The results reveal that the negative effect of renewable energy development (RED) on power supply reliability (PSR) is gradually lessening. If the development of renewable energy is a rational way, power supply reliability can be improved. Additionally, energy-exporting regions bear more risks of RED than energy-importing regions. If the coal prices are stable and natural disasters are manageable, the RED can enhance the PSR. However, if they are not stable or controllable, a high proportion of renewable energy in the power system could cause even more severe problems with PSR. Based on these critical results, some suggestions are made to promote the formation of a new power system.


Assuntos
Energia Renovável , China , Centrais Elétricas , Carvão Mineral , Fontes de Energia Elétrica , Reprodutibilidade dos Testes
3.
Biotechnol Adv ; 73: 108364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642673

RESUMO

Global sustainable development faces a significant challenge in effectively utilizing CO2. Meanwhile, CO2 biological fixation offers a promising solution. CO2 has the highest oxidation state (+4 valence state), whereas typical multi­carbon chemicals have lower valence states. The Gibbs free energy (ΔG) changes of CO2 reductive reactions are generally positive and this renders it necessary to input different forms of energy. Although biological carbon fixation processes are friendly to operate, the thermodynamic obstacles must be overcome. To make this reaction occur favorably and efficiently, diverse strategies to enhance CO2 biological fixation efficiency have been proposed by numerous researchers. This article reviews recent advances in optimizing CO2 biological fixation and intends to provide new insights into achieving efficient biological utilization of CO2. It first outlines the thermodynamic characteristics of diverse carbon fixation reactions and proposes optimization directions for CO2 biological fixation. A comprehensive overview of the catalytic mechanisms, optimization strategies, and challenges encountered by common carbon-fixing enzymes is then provided. Subsequently, potential routes for improving the efficiency of biological carbon fixation are discussed, including the ATP supply, reducing power supply, energy supply, reactor design, and carbon enrichment system modules. In addition, effective artificial carbon fixation pathways were summarized and analyzed. Finally, prospects are made for the research direction of continuously improving the efficiency of biological carbon fixation.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Termodinâmica
4.
Sci Rep ; 14(1): 5444, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443671

RESUMO

With the development of distributed power sources in the distribution network, the algorithm of distribution network reconfiguration is gaining attention from experts and scholars. Its goal is to reduce the power loss during power transmission, so as to reduce the power grid loss during power transmission. And weaken the electric heating effect in the process of electric energy transmission, thus maintaining the safety of the surrounding residents. Due to the wire impedance effect, a lot of electric energy of the circuit is lost to electric heating, which is easy to cause local overheating and lead to fire. This will not only cause power loss, but also endanger the safety of surrounding residents. To address the issue, experiments on distribution grid reconstruction are performed using the enhanced particle swarm-fish swarm algorithm with the Elecgrid self-constructed dataset. Initially, low-voltage distributed power sources in parallel are connected to the circuit, thereby decreasing internal resistance and electrical heat. Then, by controlling the circuit in the system, the double separation relay adjusts the inductance and capacitance of the conductor, thus reducing the reactance length. Additionally, particle swarm particles are mutated to enable them to jump out of the local optimum, and elite fish approach is used to expand the search area. Finally, the proposed fusion algorithm is applied to the self-built data set of Elecgrid and compared with the other three algorithms. The fusion algorithm serves as the standard test system for this comparison. The active power loss of the hybrid algorithm is 63 kW at an operating voltage of 0.74 V. The loss work of the other three algorithms is 74 kW, 97 kW and 109 kW respectively. The mixed algorithm has the lowest loss among the four algorithms. The experiments are repeated for six times, and the linear fitting degrees of the four algorithms are 0.9804, 0.9527, 0.9612 and 0.9503, respectively. The experimental results show that the application of this algorithm can effectively reduce the active loss in the process of distribution network reconfiguration, thus reducing energy consumption; At the same time, it can reduce the electric heating in the process of electric energy transmission, and then prevent the occurrence of fire. There are three main contributions of this study. Firstly, the resistance in the transmission path is reduced by using this algorithm, so that the power transmission efficiency can be analyzed more accurately. Secondly, the new algorithm enriches the power safety maintenance method; Finally, the fire caused by local overheating of the line is reduced by fusion algorithm.

5.
Pacing Clin Electrophysiol ; 47(4): 542-550, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38407386

RESUMO

The incidence and prevalence of cardiovascular diseases (CVD) have risen over the last few decades worldwide, resulting in a cost burden to healthcare systems and increasingly complex procedures. Among many strategies for treating heart diseases, treating arrhythmias using cardiac implantable electronic devices (CIEDs) has been shown to improve quality of life and reduce the incidence of sudden cardiac death. The battery-powered CIEDs have the inherent challenge of regular battery replacements depending upon energy usage for their programmed tasks. Nanogenerator-based  energy harvesters have been extensively studied, developed, and optimized continuously in recent years to overcome this challenge owing to their merits of self-powering abilities and good biocompatibility. Although these nanogenerators and others currently used in energy harvesters, such as biofuel cells (BFCs) exhibit an infinite spectrum of uses for this novel technology, their demerits should not be dismissed. Despite the emergence of Qi wireless power transfer (WPT) has revolutionized the technological world, its application in CIEDs has yet to be studied well. This review outlines the working principles and applications of currently employed energy harvesters to provide a preliminary exploration of CIEDs based on Qi WPT, which may be a promising technology for the next generation of functionalized CIEDs.


Assuntos
Desfibriladores Implantáveis , Humanos , Qi , Qualidade de Vida , Coração , Eletrônica
6.
Adv Mater ; 36(21): e2313697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364255

RESUMO

Programmable metasurface technology can achieve flexible manipulations of electromagnetic waves in real time by adjusting the surface structure and material properties and has shown extraordinary potential in many fields such as wireless communications and the Internet of Things. However, most of the programmable metasurfaces have a common feature: a tail (electrical wires and DC powers), which is difficult to supply in some particular application scenarios such as canyons and mountains. To eliminate the limitation of DC power supply, the programmable metasurface and wireless power transfer technology are combined to propose a tailless information-energy metasurface (IEMS). The tailless IEMS platform can dynamically control electromagnetic waves without relying on an external DC power supply; instead, the required DC power is provided internally by the IEMS platform itself. In the tailless IEMS experiments, the concept is demonstrated through the dynamic regulation of wireless channels and the wireless transmission of DC power. This work provides a self-powered method for programmable metasurfaces, expands the application scenarios, facilitates the miniaturization of systems, and makes it easy to integrate with other systems.

7.
MethodsX ; 12: 102563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38328504

RESUMO

Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.

8.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398957

RESUMO

The paper reports on high voltage (HV)-isolated MEMS quad-solenoid transformers for compact isolated gate drivers and bias power supplies. The component is wafer-level fabricated via a novel MEMS micro-casting technique, where the tightly coupled quad-solenoid chip consists of monolithically integrated 3D inductive coils and an inserted ferrite magnetic core for high-efficiency isolated power transmission through electromagnetic coupling. The proposed HV-isolated transformer demonstrates a high inductance value of 743.2 nH, along with a small DC resistance of only 0.39 Ω in a compact footprint of 6 mm2, making it achieve a very high inductance integration density (123.9 nH/mm2) and the ratio of L/R (1906 nH/Ω). More importantly, with embedded ultra-thick serpentine-shaped (S-shaped) SiO2 isolation barriers that completely separate the primary and secondary windings, an over 2 kV breakdown voltage is obtained. In addition, the HV-isolated transformer chips exhibit a superior power transfer efficiency of over 80% and ultra-high dual-phase saturation current of 1.4 A, thereby covering most practical cases in isolated, integrated bias power supplies such as high-efficiency high-voltage-isolated gate driver solutions.

9.
Adv Mater ; 36(16): e2311476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181179

RESUMO

The ability of achieving high efficiency makes tandem organic photovoltaics (PVs) a competitive technique in potential indoor applications. Except high efficiency, reliable indoor energy supply also calls for outstanding stability. However, unavoidable unstable voltage supply from the circuit control system for indoor light sources like light emitting diodes (LED) and incandescent lamps would cause carrier density fluctuation and device fatigue driven by periodic light/dark switching. In this work, the strobing-induced fatigue within the bulk heterojunction (BHJ)/interconnecting layer (ICL) interface is first revealed and overcome. Based on reliable and effective interfacial doping between conjugated acceptor and metal oxide, the interfacial capacitance that determines the strobing-induced fatigue, has been significantly restrained. The imbalance carrier migration and fierce inter-layer accommodating during the burn-in stage caused by light strobing are substantially diminished. Benefit from this method, the stability of tandem devices is highly enhanced under strobing indoor illumination, and a champion efficiency (35.02%) is obtained. The method provides guidance for further material design for interconnecting layers in organic photovoltaics.

10.
Environ Sci Pollut Res Int ; 31(1): 609-621, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015402

RESUMO

The objective of this investigation is to evaluate the characteristics associated with degradation of toluene through the utilization of non-thermal plasma (NTP) generated via application of a low-work-function electrode and nanosecond pulsed power supply. Initially, a comparative analysis is made between toluene removal efficiency utilizing the low-work-function electrode and that achieved with the conventional stainless-steel electrode. The outcomes demonstrate that NTP generated by the low-work-function electrode exhibits markedly superior removal efficiency for toluene in comparison to the stainless-steel electrode operating at the same voltage. Subsequently, the impacts of voltage, pulse frequency, and initial concentration of toluene on the removal efficiency and production of by-products are investigated. It is found that as the voltage and frequency increase, the removal efficiency also increases, and a maximum toluene removal efficiency of 87.2% is achieved at a voltage of 12,000 V and pulse frequency of 2000 Hz. The removal efficiency first increases and then decreases with increasing toluene initial concentration. The investigation also finds that energy yield is negatively correlated with voltage and pulse frequency and positively correlated with the initial concentration. Finally, the reaction products were subjected to quantitative analysis using GC-MS. Based on the analysis results, potential reaction pathways are inferred.


Assuntos
Tolueno , Tungstênio , Tolueno/análise , Eletrodos , Cromatografia Gasosa-Espectrometria de Massas , Aço
11.
HardwareX ; 16: e00483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020542

RESUMO

Electrospinning's production method has been streamlined and perfected because to advancements in technology and increased demand. While working with electrospun fibers, it is crucial to ensure that they are collected in the correct orientation. Electrospun fibers can be either aligned or random. In contrast to randomly oriented fibers, all aligned ones will point in the same direction. Our results show that a low-cost, tailored electrospinning device can achieve equivalent performance to that of a commercially available system. High voltage (up to 36 kV) and nanofiber orientation adjustments are now being made to the proposed device. A high-voltage direct-current electrical power supply that is custom-built per order and wired by hand. Two specialized collectors, one portable and manufactured from conductive material for random nanofibers, and the other an inexpensive rotational drum collector for aligned nanofibers, have been developed to allow for precise orientation control. By applying Image J software to scanning electron micrographs, we were able to determine the average diameter and orientation of the fibers produced by the electrospinning apparatus, demonstrating its potential to produce nanoscale directed fibers. Because of this research, it's possible that schools will be able to afford an electrospinning system at a price far lower than the current market price.

12.
Heliyon ; 9(10): e20836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867817

RESUMO

The UK is planning to ban the sale of fuel vehicles entirely by 2035 and electric vehicles will be a potential alternative to fuel vehicles. The increase in electric vehicles will increase the charging demand. Standalone charging stations are a potential solution to alleviate the grid challenges of increased charging demand. In this work, the authors investigate a reliability analysis of a 2 MW standalone photovoltaic electric vehicle charging station (PVEVCS) using the loss of power supply probability(LPSP). The PVEVCS model consists of a PV system, a battery energy storage system (BESS) and a CS, using the climate data from Camborne, UK and classifying it into high and low irradiation sections. Next, four different charging demand profiles are selected to examine the models' LPSP. Later, the chosen charging demand profiles are optimised using various combinations of PV systems, BESS and CS. It is concluded that the different solar irradiation had a significant effect on the LPSP. Under the same combination, higher PV capacity has a more positive impact on reducing daytime LPSP, higher BESS capacity has a more significant effect on lowering nighttime LPSP and larger CS capacity has a more significant impact on declining hourly LPSP.

13.
Heliyon ; 9(10): e20994, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867819

RESUMO

In this paper, a comprehensive investigation into discretization, effective sample time selection considering delays in the system, and time and frequency domain analysis of a DC-DC buck converter, which plays a vital role in photovoltaic (PV) systems, is conducted to enhance the understanding of their dynamic behavior, optimize control algorithms, improve system efficiency, and ensure reliable power conversion in photovoltaic applications. To effectively address the non-linear behavior and enhance digital control of a buck converter by selecting the best sample time, several approaches can be employed. These include accurate modeling and identification of non-linear elements, development of advanced control algorithms that account for non-linearities, implementation of adaptive control techniques, and utilization of feedback mechanisms to compensate for deviations from linearity. By considering and mitigating the non-linear behavior, digital control systems can achieve improved accuracy, stability, and transient behavior in regulating the buck converter's output waveforms (voltage or current). The results of the study demonstrated that the trapezoidal integration method which is also known as bilinear approximation, or Tustin's approach outperformed other commonly used discretization methods, such as first-order hold (FOH), zero-order hold (ZOH), impulse response matching (impulse invariant), and matched pole-zero (MPZ) technique, in dual-domain (both time and frequency) analysis. The key finding highlighting the superiority of the bilinear approximation was its ability to achieve the closest match in the frequency domain bridging the continuous-time and discrete systems. This finding emphasizes the significance of the bilinear approach in preserving the frequency characteristics of the original continuous-time system during discretization. By employing this method, the discrete system closely approximated the behavior of its continuous-time counterpart, ensuring accurate frequency-domain representation.

14.
ACS Appl Mater Interfaces ; 15(43): 50391-50399, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870942

RESUMO

Nanochannel ionic diodes require extremely complex and expensive fabrication processes. Polyelectrolyte ionic diodes attracted widespread attention among ionic rectification systems due to their simplicity of development and the ability to break the size limits of the nanochannel. However, enhancement of their rectification ratio is still in the exploratory stage. In this study, chitosan (CS) hydrogels and sodium polyacrylate (PAAs) hydrogels were prepared as the substrates for the heterostructured ionic diodes. 5,10,15,20-Tetrakis(4-aminophenyl)-21H,23H-porphyrin (TAPP) was selected to regulate the rectification ratio of ionic diodes. By adding 0.05 wt % TAPP to the CS hydrogel, the rectification ratio of the ionic diode can be increased to 10, which is 4 times larger than that of the undoped ionic diode. In contrast, the rectification ratio of the ionic diodes with TAPP added in the PAAs hydrogel decreases to 2. In addition, the ionic diode composed of the TAPP-doped CS hydrogel and PAAs hydrogel has the characteristics of a high open-circuit voltage. The open-circuit voltage of the 10 mm × 10 mm × 4 mm heterojunction hydrogel reached 370 mV. The ionic diodes can be used as a self-powered power supply device.

15.
Heliyon ; 9(9): e19819, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809885

RESUMO

This paper presents the characterization of a TIG welding process carried out by means of an arc welding power supply able to provide dc or pulsed current. The arc welding power supply is based on resonant power converters and an FPGA-based control circuit. Dc and multiple pulsed operations up to 1 kHz with different pulse widths have been tested. The operation of the proposed welding power supply has been compared to that of a high-quality commercial welding machine. Regarding performance, the investigated electrical parameters are: power factor, power conversion efficiency and the energy consumption of the process. The radiography and mechanical properties of the welds have been examined. The mechanical properties of the welded joints characterized through tensile tests are the yield stress, tensile strength and the strain under maximum stress. In addition, the impact properties of the joints were determined through Charpy tests and the curves relating energy absorbed and temperature were obtained. The results show an improved performance of the proposed arc welding power supply over the commercial counterpart, with higher efficiency and power factor, as well as lower energy consumption. The yield stress and tensile strength results indicate that the welded plates using pulsed modes with the proposed power supply are comparable to the reference weld performed with dc operation using the commercial welder. Remarkably, it was observed that the ductility of the welded plates using pulsed modes with the proposed power supply outperforms those of the reference weld carried out with dc arc using the commercial welder.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37723393

RESUMO

As a flexible electricity pricing mechanism, critical peak pricing (CPP) is one of the important means of demand response under the electricity market. The existing CPP research does not take into account the carbon emission problem of units and weakens the difference between the use of terminal loads on critical peak days and non-critical peak days in the establishment of electricity price model, so this paper studies the feedback mechanism of CPP on coal consumption of power generation side units and proposes a dynamic CPP mechanism that takes into account terminal consumption satisfaction and coal consumption of power generation side units. Firstly, the influence mechanism of CPP on the power generation side is studied. Secondly, the consumer psychology theory is used to construct a user demand response model under critical peak days and non-critical peak days. Then, based on the difference in load usage of end users on critical peak days and non-critical peak days, a multi-objective CPP optimization model that considers the benefits of coal consumption and end user electricity expenditure on the power generation side is constructed. Finally, three scenarios were established to analyze the sensitivity of the user demand response model parameters, terminal satisfaction constraints, prices, and rate restrictions on CPP pricing, load improvement, and unit coal consumption reduction and verify the model's effectiveness. The results show that the proposed CPP optimization model has a significant effect on load improvement and carbon emission reduction; the user response gradient, terminal satisfaction, prices, and rate restrictions have a greater influence on the model optimization results, while the threshold and saturation values have little influence on the model optimization results.

17.
Micromachines (Basel) ; 14(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37763888

RESUMO

An Auto-Trimming CMOS Bandgap References Circuit (ATBGR) with PSRR enhancement circuit for Artificial Intelligence of Things (AIoT) chips is presented in this paper. The ATBGR is designed with a first-order temperature compensation technique providing a stable reference voltage of 1.25 V in the ranges of input voltages from 1.65 V to 4.5 V. An auto-trimming circuit is integrated into a PTAT resistor of BGR to minimize the influences of the process variations. The four parallel resistor pairs with PMOS switches are connected in series with the PTAT resistor. The reference voltage, VREF, is compared to an external constant value, 1.25 V, through an operational amplifier, and the output of the de-multiplexer is used to configure the PMOS switches. High power supply rejection is achieved through a PSRR enhancement circuit constituting a cascaded PMOS common gate pair. The ATBGR circuit is fabricated in 180 nm CMOS technology, consuming an area of 0.03277 mm2. The auto-trimming method yields an average temperature coefficient of 9.99 ppm/°C with temperature ranges from -40 °C to 125 °C, and a power supply rejection ratio of -90 dB at 100 MHz is obtained. The line regulation of the proposed circuit is 0.434%/V with power consumption of 54.12 µW at room temperature.

18.
Adv Mater ; 35(40): e2306903, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535425

RESUMO

Despite possessing higher tissue transmittance and maximum permissible exposure power density for skin relative to other electromagnetic waves, second near-infrared light (1000-1350 nm) is scarcely applicable to subcutaneous photoelectric conversion, owing to the companion photothermal effect. Here, skin thermal management is conceived to utmostly utilize the photothermal effect of a photovoltaic cell, which not only improves the photoelectric conversion efficiency but also eliminates skin hyperthermia. In vivo, the output power can be higher than 500 mW with a photoelectric conversion efficiency of 9.4%. This output power is promising to recharge all the clinically applied implantable devices via wireless power transmission, that is, clinical pacemakers (6-200 µW), drug pumps (0.5-2 mW), cochlear (5-40 mW), and wireless endo-photo cameras (≈100 mW).


Assuntos
Próteses e Implantes , Pele , Administração Cutânea , Temperatura Cutânea , Raios Infravermelhos
19.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420910

RESUMO

In the ultrasonic welding system, the ultrasonic power supply drives the piezoelectric transducer to work in the resonant state to realize the conversion of electrical energy into mechanical energy. In order to obtain stable ultrasonic energy and ensure welding quality, this paper designs a driving power supply based on an improved LC matching network with two functions, frequency tracking and power regulation. First, in order to analyze the dynamic branch of the piezoelectric transducer, we propose an improved LC matching network, in which three voltage RMS values are used to analyze the dynamic branch and discriminate the series resonant frequency. Further, the driving power system is designed using the three RMS voltage values as feedback. A fuzzy control method is used for frequency tracking. The double closed-loop control method of the power outer loop and the current inner loop is used for power regulation. Through MATLAB software simulation and experimental testing, it is verified that the power supply can effectively track the series resonant frequency and control the power while being continuously adjustable. This study has promising applications in ultrasonic welding technology with complex loads.


Assuntos
Software , Ultrassom , Desenho de Equipamento , Simulação por Computador , Transdutores
20.
IEEE Embed Syst Lett ; 15(2): 61-64, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37334225

RESUMO

During the current crisis caused by the COVID-19 pandemic, Wearable IoT (WIoT) health devices have become essential resources for remote monitoring of the main physiological signs affected by this disease. As well as sensors, microprocessor, and wireless communication elements are widely studied, the power supply unit has the same importance for the WIoT technology, since the autonomy of the system between recharges is of great importance. This letter presents the design of the power supply system of a WIoT device capable of monitoring oxygen saturation and body temperature, sending the collected data to an IoT platform. The supply system is based on a three-stage block consisting of a rechargeable battery, battery charge controller, and dc voltage converter. The power supply system is designed and implemented as a prototype in order to test performance and efficiency. The results show that the designed block provides a stable supply voltage avoiding energy losses, which makes it an efficient and rapidly developing system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA