Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
mBio ; 15(7): e0129224, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860823

RESUMO

Sepsis and chronic infections with Pseudomonas aeruginosa, a leading "ESKAPE" bacterial pathogen, are associated with increased morbidity and mortality and skeletal muscle atrophy. The actions of this pathogen on skeletal muscle remain poorly understood. In skeletal muscle, mitochondria serve as a crucial energy source, which may be perturbed by infection. Here, using the well-established backburn and infection model of murine P. aeruginosa infection, we deciphered the systemic impact of the quorum-sensing transcription factor MvfR (multiple virulence factor regulator) by interrogating, 5 days post-infection, its effect on mitochondrial-related functions in the gastrocnemius skeletal muscle and the outcome of the pharmacological inhibition of MvfR function and that of the mitochondrial-targeted peptide, Szeto-Schiller 31 (SS-31). Our findings show that the MvfR perturbs adenosine triphosphate generation, oxidative phosphorylation, and antioxidant response, elevates the production of reactive oxygen species, and promotes oxidative damage of mitochondrial DNA in the gastrocnemius muscle of infected mice. These impairments in mitochondrial-related functions were corroborated by the alteration of key mitochondrial proteins involved in electron transport, mitochondrial biogenesis, dynamics and quality control, and mitochondrial uncoupling. Pharmacological inhibition of MvfR using the potent anti-MvfR lead, D88, we developed, or the mitochondrial-targeted peptide SS-31 rescued the MvfR-mediated alterations observed in mice infected with the wild-type strain PA14. Our study provides insights into the actions of MvfR in orchestrating mitochondrial dysfunction in the skeletal murine muscle, and it presents novel therapeutic approaches for optimizing clinical outcomes in affected patients. IMPORTANCE: Skeletal muscle, pivotal for many functions in the human body, including breathing and protecting internal organs, contains abundant mitochondria essential for maintaining cellular homeostasis during infection. The effect of Pseudomonas aeruginosa (PA) infections on skeletal muscle remains poorly understood. Our study delves into the role of a central quorum-sensing transcription factor, multiple virulence factor regulator (MvfR), that controls the expression of multiple acute and chronic virulence functions that contribute to the pathogenicity of PA. The significance of our study lies in the role of MvfR in the metabolic perturbances linked to mitochondrial functions in skeletal muscle and the effectiveness of the novel MvfR inhibitor and the mitochondrial-targeted peptide SS-31 in alleviating the mitochondrial disturbances caused by PA in skeletal muscle. Inhibiting MvfR or interfering with its effects can be a potential therapeutic strategy to curb PA virulence.


Assuntos
Proteínas de Bactérias , Músculo Esquelético , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Animais , Camundongos , Músculo Esquelético/microbiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia
2.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340793

RESUMO

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Transcrição Gênica , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum , Sistemas do Segundo Mensageiro , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
3.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421269

RESUMO

Pseudomonas aeruginosa, a harmful nosocomial pathogen associated with cystic fibrosis and burn wounds, encodes for a large number of LysR-type transcriptional regulator proteins. To understand how and why LTTR proteins evolved with such frequency and to establish whether any relationships exist within the distribution we set out to identify the patterns underpinning LTTR distribution in P. aeruginosa and to uncover cluster-based relationships within the pangenome. Comparative genomic studies revealed that in the JGI IMG database alone ~86 000 LTTRs are present across the sequenced genomes (n=699). They are widely distributed across the species, with core LTTRs present in >93 % of the genomes and accessory LTTRs present in <7 %. Analysis showed that subsets of core LTTRs can be classified as either variable (typically specific to P. aeruginosa) or conserved (and found to be distributed in other Pseudomonas species). Extending the analysis to the more extensive Pseudomonas database, PA14 rooted analysis confirmed the diversification patterns and revealed PqsR, the receptor for the Pseudomonas quinolone signal (PQS) and 2-heptyl-4-quinolone (HHQ) quorum-sensing signals, to be amongst the most variable in the dataset. Successful complementation of the PAO1 pqsR - mutant using representative variant pqsR sequences suggests a degree of structural promiscuity within the most variable of LTTRs, several of which play a prominent role in signalling and communication. These findings provide a new insight into the diversification of LTTR proteins within the P. aeruginosa species and suggests a functional significance to the cluster, conservation and distribution patterns identified.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Genômica , Pseudomonas , Fibrose Cística/genética
4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339148

RESUMO

Pseudomonas aeruginosa is a clinically challenging pathogen due to its high resistance to antibiotics. Quorum sensing inhibitors (QSIs) have been proposed as a promising strategy to overcome this resistance by interfering with the bacterial communication system. Among the potential targets of QSIs, PqsR is a key regulator of quorum sensing in Pseudomonas aeruginosa. However, the current research on PqsR inhibitors is limited by the lack of diversity in the chemical structures and the screening methods. Therefore, this study aims to develop a multidimensional screening model for PqsR inhibitors based on both ligand- and receptor-based approaches. First, a pharmacophore model was constructed from a training set of PqsR inhibitors to identify the essential features and spatial arrangement for the activity. Then, molecular docking and dynamics simulations were performed to explore the core interactions between PqsR inhibitors and their receptor. The results indicate that an effective PqsR inhibitor should possess two aromatic rings, one hydrogen bond acceptor, and two hydrophobic groups and should form strong interactions with the following four amino acid residues: TYR_258, ILE_236, LEU_208, and GLN_194. Moreover, the docking score and the binding free energy should be lower than -8 kcal/mol and -40 kcal/mol, respectively. Finally, the validity of the multidimensional screening model was confirmed by a test set of PqsR inhibitors, which showed a higher accuracy than the existing screening methods based on single characteristics. This multidimensional screening model would be a useful tool for the discovery and optimization of PqsR inhibitors in the future.


Assuntos
Simulação de Dinâmica Molecular , Farmacóforo , Simulação de Acoplamento Molecular , Percepção de Quorum , Antibacterianos/química
5.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764311

RESUMO

Pseudomonas aeruginosa (PA), one of the ESKAPE pathogens, is an opportunistic Gram-negative bacterium responsible for nosocomial infections in humans but also for infections in patients affected by AIDS, cancer, or cystic fibrosis (CF). Treatment of PA infections in CF patients is a global healthcare problem due to the ability of PA to gain antibiotic tolerance through biofilm formation. Anti-virulence compounds represent a promising approach as adjuvant therapy, which could reduce or eliminate the pathogenicity of PA without impacting its growth. Pyocyanin is one of the virulence factors whose production is modulated by the Pseudomonas quinolone signal (PQS) through its receptor PqsR. Different PqsR modulators have been synthesized over the years, highlighting this new powerful therapeutic strategy. Based on the promising structure of quinazolin-4(3H)-one, we developed compounds 7a-d, 8a,b, 9, 10, and 11a-f able to reduce biofilm formation and the production of virulence factors (pyocyanin and pyoverdine) at 50 µM in two PA strains responsible for CF acute and chronic infections. The developed compounds did not reduce the cell viability of IB3-1 bronchial CF cells, and computational studies confirmed the potential ability of novel compounds to act as potential Pqs system modulators.

6.
mBio ; 14(2): e0015923, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37010415

RESUMO

Macrophages are crucial components of the host's defense against pathogens. Recent studies indicate that macrophage functions are influenced by lipid metabolism. However, knowledge of how bacterial pathogens exploit macrophage lipid metabolism for their benefit remains rudimentary. We have shown that the Pseudomonas aeruginosa MvfR-regulated quorum-sensing (QS) signaling molecule 2-aminoacetophenone (2-AA) mediates epigenetic and metabolic changes associated with this pathogen's persistence in vivo. We provide evidence that 2-AA counteracts the ability of macrophages to clear the intracellular P. aeruginosa, leading to persistence. The intracellular action of 2-AA in macrophages is linked to reduced autophagic functions and the impaired expression of a central lipogenic gene, stearoyl-CoA desaturase 1 (Scd1), which catalyzes the biosynthesis of monounsaturated fatty acids. 2-AA also reduces the expression of the autophagic genes Unc-51-like autophagy activating kinase 1 (ULK1) and Beclin1 and the levels of the autophagosomal membrane protein microtubule-associated protein 1, light chain 3 isoform B (LC3B) and p62. Reduced autophagy is accompanied by the reduced expression of the lipogenic gene Scd1, preventing bacterial clearance. Adding the SCD1 substrates palmitoyl-CoA and stearoyl-CoA increases P. aeruginosa clearance by macrophages. The impact of 2-AA on lipogenic gene expression and autophagic machinery is histone deacetylase 1 (HDAC1) mediated, implicating the HDAC1 epigenetic marks at the promoter sites of Scd1 and Beclin1 genes. This work provides novel insights into the complex metabolic alterations and epigenetic regulation promoted by QS and uncovers additional 2-AA actions supporting P. aeruginosa sustainment in macrophages. These findings may aid in designing host-directed therapeutics and protective interventions against P. aeruginosa persistence. IMPORTANCE This work sheds new light on how P. aeruginosa limits bacterial clearance in macrophages through 2-aminoacetophenone (2-AA), a secreted signaling molecule by this pathogen that is regulated by the quorum-sensing transcription factor MvfR. The action of 2-AA on the lipid biosynthesis gene Scd1 and the autophagic genes ULK1 and Beclin1 appears to secure the reduced intracellular clearance of P. aeruginosa by macrophages. In support of the 2-AA effect on lipid biosynthesis, the ability of macrophages to reduce the intracellular P. aeruginosa burden is reinstated following the supplementation of palmitoyl-CoA and stearoyl-CoA. The 2-AA-mediated reduction of Scd1 and Beclin1 expression is linked to chromatin modifications, implicating the enzyme histone deacetylase 1 (HDAC1), thus opening new avenues for future strategies against this pathogen's persistence. Overall, the knowledge obtained from this work provides for developing new therapeutics against P. aeruginosa.


Assuntos
Histona Desacetilase 1 , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Histona Desacetilase 1/metabolismo , Epigênese Genética , Proteína Beclina-1/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Macrófagos/metabolismo , Autofagia
7.
mBio ; 14(2): e0352422, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786582

RESUMO

Quorum sensing (QS) is a highly conserved microbial communication mechanism based on the production and sensing of secreted signaling molecules. The recalcitrant pathogen Pseudomonas aeruginosa is a problematic nosocomial pathogen with complex interconnected QS systems controlling multiple virulence functions. The relevance of QS in P. aeruginosa pathogenesis is well established; however, the regulatory interrelationships of the three major QS systems, LasR/LasI, MvfR (PqsR)/PqsABCD, and RhlR/RhlI, have been studied primarily in vitro. It is, therefore, unclear how these relationships translate to the host environment during infection. Here, we use a collection of P. aeruginosa QS mutants of the three major QS systems to assess the interconnections and contributions in intestinal inflammation and barrier function in vivo. This work reveals that MvfR, not LasR or RhlR, promotes intestinal inflammation during infection. In contrast, we find that P. aeruginosa-driven murine intestinal permeability is controlled by an interconnected QS network involving all three regulators, with MvfR situated upstream of LasR and RhlR. This study demonstrates the importance of understanding the interrelationships of the QS systems during infection and provides critical insights for developing successful antivirulence strategies. Moreover, this work provides a framework to interrogate QS systems in physiologically relevant settings. IMPORTANCE Pseudomonas aeruginosa is a common multidrug-resistant bacterial pathogen that seriously threatens critically ill and immunocompromised patients. Intestinal colonization by this pathogen is associated with elevated mortality rates. Disrupting bacterial communication is a desirable anti-infective approach since these systems coordinate multiple acute and chronic virulence functions in P. aeruginosa. Here, we investigate the role of each of the three major communication systems in the host intestinal functions. This work reveals that P. aeruginosa influences intestinal inflammation and permeability through distinct mechanisms.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , Humanos , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Inflamação , Infecções por Pseudomonas/microbiologia
8.
Microb Drug Resist ; 28(11): 1003-1018, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219761

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 µM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.


Assuntos
Pseudomonas aeruginosa , Tiazolidinedionas , Humanos , Piocianina/farmacologia , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Fatores de Virulência , Tiazolidinedionas/farmacologia , Peptídeo Hidrolases/farmacologia , Proteínas de Bactérias/farmacologia
9.
Adv Exp Med Biol ; 1386: 95-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258070

RESUMO

Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.


Assuntos
Quinolonas , Percepção de Quorum , Pseudomonas aeruginosa/genética , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regulação Bacteriana da Expressão Gênica
10.
Microbiol Spectr ; 10(4): e0107321, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876587

RESUMO

Understanding quorum sensing (QS) and its role in the development of pathogenesis may provide new avenues for diagnosing, surveillance, and treatment of infectious diseases. For this purpose, the availability of reliable and efficient analytical diagnostic tools suitable to specifically detect and quantify these essential QS small molecules and QS regulated virulence factors is crucial. Here, we reported the development and evaluation of antibodies and an enzyme-linked immunosorbent assay (ELISA) for HQNO (2-heptyl-4-quinoline N-oxide), a QS product of the PqsR system, which has been found to act as a major virulence factor that interferes with the growth of other microorganisms. Despite the nonimmunogenic character of HQNO, the antibodies produced showed high avidity and the microplate-based ELISA developed could detect HQNO in the low nM range. Hence, a limit of detection (LOD) of 0.60 ± 0.13 nM had been reached in Müeller Hinton (MH) broth, which was below previously reported levels using sophisticated equipment based on liquid chromatography coupled to mass spectrometry. The HQNO profile of release of different Pseudomonas aeruginosa clinical isolates analyzed using this ELISA showed significant differences depending on whether the clinical isolates belonged to patients with acute or chronic infections. These data point to the possibility of using HQNO as a specific biomarker to diagnose P. aeruginosa infections and for patient surveillance. Considering the role of HQNO in inhibiting the growth of coinfecting bacteria, the present ELISA will allow the investigation of these complex bacterial interactions underlying infections. IMPORTANCE Bacteria use quorum sensing (QS) as a communication mechanism that releases small signaling molecules which allow synchronizing a series of activities involved in the pathogenesis, such as the biosynthesis of virulence factors or the regulation of growth of other bacterial species. HQNO is a metabolite of the Pseudomonas aeruginosa-specific QS signaling molecule PQS (Pseudomonas quinolone signal). In this work, the development of highly specific antibodies and an immunochemical diagnostic technology (ELISA) for the detection and quantification of HQNO was reported. The ELISA allowed profiling of the release of HQNO by clinical bacterial isolates, showing its potential value for diagnosing and surveillance of P. aeruginosa infections. Moreover, the antibodies and the ELISA reported here may contribute to the knowledge of other underlying conditions related to the pathology, such as the role of the interactions with other bacteria of a particular microbiota environment.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , 4-Quinolonas , Proteínas de Bactérias/metabolismo , Humanos , Óxidos/metabolismo , Óxidos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/fisiologia , Virulência , Fatores de Virulência/metabolismo
11.
J Appl Microbiol ; 133(4): 2167-2181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35490292

RESUMO

AIMS: The emerging of drug resistant Pseudomonas aeruginosa is a critical challenge and renders an urgent action to discover innovative antimicrobial interventions. One of these interventions is to disrupt the pseudomonas quinolone signal (pqs) quorum sensing (QS) system, which governs multiple virulence traits and biofilm formation. This study aimed to investigate the QS inhibitory activity of a series of new PqsR inhibitors bearing a quinoline scaffold against Ps. aeruginosa. METHODS AND RESULTS: The results showed that compound 1 suppressed the expression of QS-related genes and showed the best inhibitory activity to the pqs system of wild-type Ps. aeruginosa PAO1 with an IC50 of 20.22 µmol L-1 . The virulence factors including pyocyanin, total protease, elastase and rhamnolipid were significantly suppressed in a concentration-dependent manner with the compound. In addition, compound 1 in combination with tetracycline inhibited synergistically the bacterial growth and suppressed the biofilm formation of PAO1. The molecular docking studies also suggested that compound 1 could potentially interact with the ligand-binding domain of the Lys-R type transcriptional regulator PqsR as a competitive antagonist. CONCLUSIONS: The quinoline-based derivatives were found to interrupt the quorum sensing system via the pqs pathway and thus the production of virulence factors was inhibited and the antimicrobial susceptibility of Ps. aeruginosa was enhanced. SIGNIFICANCE AND IMPACT OF STUDY: The study showed that the quinoline-based derivatives could be used as an anti-virulence agent for treating Ps. aeruginosa infections.


Assuntos
Pseudomonas aeruginosa , Piocianina , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Biofilmes , Endopeptidases/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Elastase Pancreática/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum , Tetraciclinas/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35455414

RESUMO

Biofilm formation is considered a major cause of therapeutic failure because bacteria in biofilms have higher protection against antimicrobials. Thus, biofilm-related infections are extremely challenging to treat and pose major concerns for public health, along with huge economic impacts. Pseudomonas aeruginosa, in particular, is a "critical priority" pathogen, responsible for severe infections, especially in cystic fibrosis patients because of its capacity to form resistant biofilms. Therefore, new therapeutic approaches are needed to complete the pipeline of molecules offering new targets and modes of action. Biofilm formation is mainly controlled by Quorum Sensing (QS), a communication system based on signaling molecules. In the present study, we employed a molecular docking approach (Autodock Vina) to assess two series of chromones-based compounds as possible ligands for PqsR, a LuxR-type receptor. Most compounds showed good predicted affinities for PqsR, higher than the PQS native ligand. Encouraged by these docking results, we synthesized a library of 34 direct and 25 retro chromone carboxamides using two optimized routes from 2-chromone carboxylic acid as starting material for both series. We evaluated the synthesized carboxamides for their ability to inhibit the biofilm formation of P. aeruginosa in vitro. Overall, results showed several chromone 2-carboxamides of the retro series are potent inhibitors of the formation of P. aeruginosa biofilms (16/25 compound with % inhibition ≥ 50% at 50 µM), without cytotoxicity on Vero cells (IC50 > 1.0 mM). The 2,4-dinitro-N-(4-oxo-4H-chromen-2-yl) benzamide (6n) was the most promising antibiofilm compound, with potential for hit to lead optimization.

13.
J Basic Microbiol ; 62(7): 801-814, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355286

RESUMO

Cell-to-cell communication is essentially required in bacteria for the production of multiple virulence factors and successful colonization in the host. Targeting the virulence factors production without hampering the growth of the pathogens is a potential strategy to control pathogenesis. To accomplish this, a total of 43 mangrove isolates were screened for quorum quenching (QQ) activity against Pseudomonas aeruginosa (PA), in which eight bacteria have shown antibiofilm activity without hampering the growth of the PA. Prominent QQ activity was observed in Bacillus subtilis BR4. Previously, we found that BR4 produces stigmatellin Y, a structural analogue of PQS signal of PA, which could competitively bind with PqsR receptor and inhibits the quorum sensing (QS) system of PA. Further, stigmatellin Y containing ethyl acetate extract (S-EAE) (100 µg ml-1 ) of BR4 significantly inhibits (p < 0.001) the biofilm formation of PA. Confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analysis also fortified the QQ activity of BR4. Furthermore, S-EAE of BR4 (500 µg ml-1 ) has significantly reduced the production of virulence factors, including protease, elastase, pyocyanin and extracellular polysaccharides substances. Furthermore, liquid chromatography-mass spectrometry (LC-MS)/MS analysis affirms that BR4 intercepts the PQS-mediated QS system by reducing the synthesis of as many PQS signals, including precursor molecule (243.162313 Da) of PQS signal. Thus, S-EAE of B. subtilis BR4 could be used as a promising therapeutic agent to combat QS system-mediated pathogenesis of PA. Further therapeutic potentials of stigmatellin Y to be evaluated in clinical studies for the treatment of multidrug resistant PA.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Polienos , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência
14.
Cell Chem Biol ; 29(7): 1187-1199.e6, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35259345

RESUMO

As single- and mixed-species biofilms, Staphylococcus aureus and Pseudomonas aeruginosa cause difficult-to-eradicate chronic infections. In P. aeruginosa, pseudomonas quinolone (PQS)-dependent quorum sensing regulates virulence and biofilm development that can be attenuated via antagonists targeting the transcriptional regulator PqsR (MvfR). Here, we exploited a quinazolinone (QZN) library including PqsR agonists and antagonists for their activity against S. aureus alone, when co-cultured with P. aeruginosa, and in combination with the aminoglycoside tobramycin. The PqsR inhibitor, QZN 34 killed planktonic Gram-positives but not Gram-negatives. QZN 34 prevented S. aureus biofilm formation, severely damaged established S. aureus biofilms, and perturbed P. aeruginosa biofilm development. Although P. aeruginosa protected S. aureus from tobramycin in mixed biofilms, the combination of aminoglycoside antibiotic with QZN 34 eradicated the mixed-species biofilm. The mechanism of action of QZN 34 toward Gram-positive bacteria is shown to involve membrane perturbation and dissipation of transmembrane potential.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias , Biofilmes , Pseudomonas , Staphylococcus aureus , Tobramicina/farmacologia
15.
ACS Infect Dis ; 7(9): 2666-2685, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34503335

RESUMO

P. aeruginosa (PA) continues to pose a threat to global public health due to its high levels of antimicrobial resistance (AMR). The ongoing AMR crisis has led to an alarming shortage of effective treatments for resistant microbes, and hence there is a pressing demand for the development of novel antimicrobial interventions. The potential use of antivirulence therapeutics to tackle bacterial infections has attracted considerable attention over the past decades as they hamper the pathogenicity of target microbes with reduced selective pressure, minimizing the emergence of resistance. One such approach is to interfere with the PA pqs quorum sensing system which upon the interaction of PqsR, a Lys-R type transcriptional regulator, with its cognate signal molecules 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), governs multiple virulence traits and host-microbe interactions. In this study, we report the hit identification and optimization of PqsR antagonists using virtual screening coupled with whole cell assay validation. The optimized hit compound 61 ((R)-2-(4-(3-(6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropoxy)phenyl)acetonitrile) was found to inhibit the expression of the PA PpqsA promoter controlled by PqsR with an IC50 of 1 µM. Using isothermal titration calorimetry, a Kd of 10 nM for the PqsR ligand binding domain (PqsRLBD) was determined for 61. Furthermore, the crystal structure of 61 with PqsRLBD was attained with a resolution of 2.65 Å. Compound 61 significantly reduced levels of pyocyanin, PQS, and HHQ in PAO1-L, PA14 lab strains and PAK6085 clinical isolate. Furthermore, this compound potentiated the effect of ciprofloxacin in early stages of biofilm treatment and in Galleria mellonella infected with PA. Altogether, this data shows 61 as a potent PqsR inhibitor with potential for hit to lead optimization toward the identification of a PA QS inhibitor which can be advanced into preclinical development.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo
16.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202446

RESUMO

Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy loss. In this article, we report the development of a new generation of cell therapy formulations with the capacity to resist infections through the bactericidal effect of antimicrobial peptide dendrimers and the anti-virulence effect of anti-quorum sensing MvfR (PqsR) system compounds, which are incorporated into their formulation. Anti-quorum sensing compounds limit the pathogenicity and antibiotic tolerance of pathogenic bacteria involved in the burn wound infections, by inhibiting their virulence pathways. For the first time, we report a biological cell therapy dressing incorporating live progenitor cells, antimicrobial peptide dendrimers, and anti-MvfR compounds, which exhibit bactericidal and anti-virulence properties without compromising the viability of the progenitor cells.


Assuntos
Antibacterianos , Queimaduras , Terapia Baseada em Transplante de Células e Tecidos , Dendrímeros , Proteínas Citotóxicas Formadoras de Poros , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Queimaduras/microbiologia , Queimaduras/patologia , Queimaduras/terapia , Células Cultivadas , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/mortalidade
17.
Bioorg Med Chem ; 31: 115967, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434766

RESUMO

The Pseudomonas quinolone system (pqs) is one of the key quorum sensing systems in antibiotic-resistant P. aeruginosa and is responsible for the production of virulence factors and biofilm formation. Thus, synthetic small molecules that can target the PqsR (MvfR) receptor can be utilized as quorum sensing inhibitors to treat P. aeruginosa infections. In this study, we report the synthesis of novel thioether-linked dihydropyrrol-2-one (DHP) analogues as PqsR antagonists. Compound 7g containing a 2-mercaptopyridyl linkage effectively inhibited the pqs system with an IC50 of 32 µM in P. aeruginosa PAO1. Additionally, these inhibitors significantly reduced bacterial aggregation and biofilm formation without affecting planktonic growth. The molecular docking study suggest that these inhibitors bind with the ligand binding domain of the MvfR as a competitive antagonist.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pirróis/farmacologia , Sulfetos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirróis/química , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfetos/química
18.
Eur J Med Chem ; 208: 112778, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927392

RESUMO

Rising numbers of cases of multidrug- and extensively drug-resistant Pseudomonas aeruginosa over recent years have created an urgent need for novel therapeutic approaches to cure potentially fatal infections. One such approach is virulence attenuation where anti-virulence compounds, designed to reduce pathogenicity without affording bactericidal effects, are employed to treat infections. P. aeruginosa uses the pqs quorum sensing (QS) system, to coordinate the expression of a large number of virulence determinants as well as bacterial-host interactions and hence represents an excellent anti-virulence target. We report the synthesis and identification of a new series of thiazole-containing quinazolinones capable of inhibiting PqsR, the transcriptional regulator of the pqs QS system. The compounds demonstrated high potency (IC50 < 300 nM) in a whole-cell assay, using a mCTX:PpqsA-lux-based bioreporter for the P. aeruginosa PAO1-L and PA14 strains. Structural evaluation defined the binding modes of four analogues in the ligand-binding domain of PqsR through X-ray crystallography. Further work showed the ability of 6-chloro-3((2-pentylthiazol-4-yl)methyl)quinazolin-4(3H)-one (18) and 6-chloro-3((2-hexylthiazol-4-yl)methyl)quinazolin-4(3H)-one (19) to attenuate production of the PqsR-regulated virulence factor pyocyanin. Compounds 18 and 19 showed a low cytotoxic profile in the A549 human epithelial lung cell line making them suitable candidates for further pre-clinical evaluation.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Quinazolinonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Células A549 , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Quinazolinonas/síntese química , Quinazolinonas/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo , Tiazóis/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
19.
Front Chem ; 8: 204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432073

RESUMO

Current treatments for Pseudomonas aeruginosa infections are becoming less effective because of the increasing rates of multi-antibiotic resistance. Pharmacological targeting of virulence through inhibition of quorum sensing (QS) dependent virulence gene regulation has considerable therapeutic potential. In P. aeruginosa, the pqs QS system regulates the production of multiple virulence factors as well as biofilm maturation and is a promising approach for developing antimicrobial adjuvants for combatting drug resistance. In this work, we report the hit optimisation for a series of potent novel inhibitors of PqsR, a key regulator of the pqs system, bearing a 2-((5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio) acetamide scaffold. The initial hit compound 7 (PAO1-L IC50 0.98 ± 0.02 µM, PA14 inactive at 10 µM) was obtained through a virtual screening campaign performed on the PqsR ligand binding domain using the University of Nottingham Managed Chemical Compound Collection. Hit optimisation gave compounds with enhanced potency against strains PAO1-L and PA14, evaluated using P. aeruginosa pqs-based QS bioreporter assays. Compound 40 (PAO1-L IC50 0.25 ± 0.12 µM, PA14 IC50 0.34 ± 0.03 µM) is one of the most potent PqsR antagonists reported showing significant inhibition of P. aeruginosa pyocyanin production and pqs system signaling in both planktonic cultures and biofilms. The co-crystal structure of 40 with the PqsR ligand binding domain revealed the specific binding interactions occurring between inhibitor and this key regulatory protein.

20.
Front Microbiol ; 10: 2355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649658

RESUMO

The emergence of antibiotic resistant bacterial pathogens is increasing at an unprecedented pace, calling for the development of new therapeutic options. Small molecules interfering with virulence processes rather than growth hold promise as an alternative to conventional antibiotics. Anti-virulence agents are expected to decrease bacterial virulence and to pose reduced selective pressure for the emergence of resistance. In the opportunistic pathogen Pseudomonas aeruginosa the expression of key virulence traits is controlled by quorum sensing (QS), an intercellular communication process that coordinates gene expression at the population level. Hence, QS inhibitors represent promising anti-virulence agents against P. aeruginosa. Virtual screenings allow fast and cost-effective selection of target ligands among vast libraries of molecules, thus accelerating the time and limiting the cost of conventional drug-discovery processes, while the drug-repurposing approach is based on the identification of off-target activity of FDA-approved drugs, likely endowed with low cytotoxicity and favorable pharmacological properties. This study aims at combining the advantages of virtual screening and drug-repurposing approaches to identify new QS inhibitors targeting the pqs QS system of P. aeruginosa. An in silico library of 1,467 FDA-approved drugs has been screened by molecular docking, and 5 hits showing the highest predicted binding affinity for the pqs QS receptor PqsR (also known as MvfR) have been selected. In vitro experiments have been performed by engineering ad hoc biosensor strains, which were used to verify the ability of hit compounds to decrease PqsR activity in P. aeruginosa. Phenotypic analyses confirmed the impact of the most promising hit, the antipsychotic drug pimozide, on the expression of P. aeruginosa PqsR-controlled virulence traits. Overall, this study highlights the potential of virtual screening campaigns of FDA-approved drugs to rapidly select new inhibitors of important bacterial functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA