Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2300452, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794608

RESUMO

Triptolide (TPL), a natural product extracted from Tripterygium wilfordii Hook F, exerts potential anti-cancer activity. Studies have shown that TPL is involved in multiple cellular processes and signal pathways; however, its pharmaceutical activity in human colorectal cancer (CRC) as well as the underlying molecular mechanism remain elusive. In this study, the effects of TPL on HCT116 human colon cancer cells and CCD841 human colon epithelial cells are first evaluated. Next, the protein targets of TPL in HCT116 cells are identified through an activity-based protein profiling approach. With subsequent in vitro experiments, the mode of action of TPL in HCT116 cells is elucidated. As a result, TPL is found to selectively inhibit HCT116 cell viability and migration. A total of 54 proteins are identified as the targets of TPL in HCT116 cells, among which, Annexin A1 (ANXA1) and Peroxiredoxin I/II (Prdx I/II) are picked out for further investigation due to their important role in CRC. The interaction between TPL and ANXA1 or Prdx I is confirmed, and it is discovered that TPL exerts inhibitory effect against HCT116 cells through binding to ANXA1 and Prdx I. The study reinforces the potential of TPL in the CRC therapy, and provides novel therapeutic targets for the treatment of CRC.

2.
Redox Biol ; 43: 101977, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905957

RESUMO

Reactive oxygen species (ROS) induction is an effective mechanism to kill cancer cells for many chemotherapeutics, while resettled redox homeostasis induced by the anticancer drugs will promote cancer chemoresistance. Natural ent-kaurane diterpenoids have been found to bind glutathione (GSH) and sulfhydryl group in antioxidant enzymes covalently, which leads to the destruction of intracellular redox homeostasis. Therefore, redox resetting destruction by ent-kaurane diterpenoids may emerge as a viable strategy for cancer therapy. In this study, we isolated 30 ent-kaurane diterpenoids including 20 new samples from Chinese liverworts Jungermannia tetragona Lindenb and studied their specific targets and possible application in cancer drug resistance through redox resetting destruction. 11ß-hydroxy-ent-16-kaurene-15-one (23) possessed strong inhibitory activity against several cancer cell lines. Moreover, compound 23 induced both apoptosis and ferroptosis through increasing cellular ROS levels in HepG2 cells. ROS accumulation induced by compound 23 was caused by inhibition of antioxidant systems through targeting peroxiredoxin I/II (Prdx I/II) and depletion of GSH. Furthermore, compound 23 sensitized cisplatin (CDDP)-resistant A549/CDDP cancer cells in vitro and in vivo by inducing apoptosis and ferroptosis. Thus, the ent-kaurane derivative showed potential application for sensitizing CDDP resistance by redox resetting destruction through dual inhibition of Prdx I/II and GSH in cancer chemotherapy.


Assuntos
Diterpenos do Tipo Caurano , Ferroptose , Apoptose , Cisplatino , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA