Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.388
Filtrar
1.
Food Chem ; 462: 140965, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197242

RESUMO

Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.


Assuntos
Cinnamomum zeylanicum , Contaminação de Alimentos , Folhas de Planta , Óleos de Plantas , Contaminação de Alimentos/análise , Óleos de Plantas/química , Óleos de Plantas/análise , Folhas de Planta/química , Cinnamomum zeylanicum/química , Perilla/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124821, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39167898

RESUMO

Detection of specific ions using fluorescent probes has relevance in several areas of therapeutics development and environmental science. Here, we provide new perspectives to the sensing of a styryl benzothiazolium-based fluorescent compound 1 and report that sensing properties are for sulfite ions in general with highest preference for metabisulfite ions (S2O52-) adding to its previously determined role as a bisulfite ion sensor. This probe exhibits its sensing action via an addition reaction in which the styryl double bond gets reduced. The interference studies highlighted that the sequence of addition of nitrite and metabisulfite has a bearing on the overall interference outcome. Spectroscopic studies revealed that the order of preferential sensing of sulfites and sulfide ion is S2O52- > HSO3- > SO32- > S2-. Although this probe displays robust sensing on its own through fluorescence quenching, its fluorescence emission can be enhanced at much lower concentrations in the presence of a G-quadruplex DNA without compromising the outcome of the sensing.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125009, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39178691

RESUMO

Fluoride ions (F-) are one of the essential trace elements for the human body and are widely existed in nature. In this study, we present a novel fluorescent probe (YF-SZ-F) designed and synthesized for the specific detection of F-. The probe exhibits high sensitivity, excellent selectivity, and low cytotoxicity, making it a promising tool for biomedical applications. Imaging experiments conducted on zebrafish and Arabidopsis roots demonstrate the probe's remarkable cellular permeability and biocompatibility, laying a solid foundation for its potential biomedical utility. Furthermore, the probe holds potential for practical applications in environmental monitoring and public health through its capability to detect fluoride ions in water samples and via mobile phone software. This multifaceted functionality underscores the broad applicability and significance of the fluorescent probe, not only in scientific research but also in real-world scenarios, contributing to the development of more convenient and precise methods for fluoride detection.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Fluoretos , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fluoretos/análise , Animais , Benzotiazóis/química , Humanos , Arabidopsis/química , Espectrometria de Fluorescência/métodos , Imagem Óptica
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125013, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186875

RESUMO

As a reactive sulfur species, sulfur dioxide (SO2) and its derivatives play crucial role in various physiological processes, which can maintain redox homeostasis at normal levels and lead to the occurrence of many diseases at abnormal levels. So, the development of a suitable fluorescent probe is a crucial step in advancing our understanding of the role of SO2 derivatives in living organisms. Herein, we developed a near-infrared fluorescent probe (SP) based on the ICT mechanism to monitor SO2 derivatives in living organisms in a ratiometric manner. The probe SP exhibited excellent selectivity, good sensitivity, fast response rate (within 50 s), and low detection limit (1.79 µM). In addition, the cell experiment results suggested that the SP has been successfully employed for the real-time monitoring of endogenous and exogenous SO2 derivatives with negligible cytotoxicity. Moreover, SP was effective in detecting SO2 derivatives in mice.


Assuntos
Corantes Fluorescentes , Dióxido de Enxofre , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Dióxido de Enxofre/análise , Animais , Camundongos , Humanos , Limite de Detecção , Espectrometria de Fluorescência , Imagem Óptica , Células HeLa
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125036, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39197210

RESUMO

Sodium tripolyphosphate (STPP), as one of the many food additives, can cause gastrointestinal discomfort and a variety of adverse reactions when ingested by the human body, which is a great potential threat to human health. Therefore, it is necessary to develop a fast, sensitive and simple method to detect STPP in food. In this study, we synthesized a kind of nitrogen-doped carbon quantum dots (N-CQDs), and were surprised to find that the addition of STPP led to the gradual enhancement of the emission peaks of the N-CQDs, with a good linearity in the range of 0.067-1.96 µM and a low detection limit as low as 0.024 µM. Up to now, there is no report on the use of carbon quantum dots for the direct detection of STPP. Meanwhile, we found that the addition of Al3+ effectively bursts the fluorescence intensity of N-CQDs@STPP solution and has a good linear relationship in the range of 0.33-6.25 µM with a lower detection limit of 0.24 µM. To this end, we developed a fluorescent probe to detect STPP and Al3+. In addition, the probe was successfully applied to the detection of bread samples, which has great potential for practical application.


Assuntos
Carbono , Corantes Fluorescentes , Aditivos Alimentares , Limite de Detecção , Polifosfatos , Pontos Quânticos , Espectrometria de Fluorescência , Pontos Quânticos/química , Corantes Fluorescentes/química , Aditivos Alimentares/análise , Espectrometria de Fluorescência/métodos , Carbono/química , Polifosfatos/análise , Polifosfatos/química , Alumínio/análise , Nitrogênio/química , Pão/análise
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125024, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39208541

RESUMO

A novel fluorescent probe NIPF was synthesized by the Suzuki reaction to recognize Cu2+ and CN-. With the addition of Cu2+, NIPF exhibited strong fluorescence quenching (90 % for NIPF) with a Ksv value of 3.4 × 106 M-1 and a detection limit of 9.04 × 10-10 M. Subsequently, CN- was added to the NIPF-Cu2+ solution, and [Cu(CN)x]n- was formed due to the strong interaction between Cu2+ and CN- leading to fluorescence recovery (89 % for NIPF-Cu2+). In addition, a detection limit of 3.6 × 10-8 M was obtained by fluorescence titration. Meanwhile, it was demonstrated that the sensor achieved 93 %-105 % recovery of Cu2+ in the tested environmental samples, and the practicability of Cu2+ and CN- detection were verified using hydrogels test, with significant color changes observed under 365 nm light. Accordingly, the fluorescent probe NIPF was used to recognize Cu2+ and CN- by the "on-off-on" sensors.

7.
Methods Mol Biol ; 2847: 241-300, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312149

RESUMO

Nucleic acid tests (NATs) are considered as gold standard in molecular diagnosis. To meet the demand for onsite, point-of-care, specific and sensitive, trace and genotype detection of pathogens and pathogenic variants, various types of NATs have been developed since the discovery of PCR. As alternatives to traditional NATs (e.g., PCR), isothermal nucleic acid amplification techniques (INAATs) such as LAMP, RPA, SDA, HDR, NASBA, and HCA were invented gradually. PCR and most of these techniques highly depend on efficient and optimal primer and probe design to deliver accurate and specific results. This chapter starts with a discussion of traditional NATs and INAATs in concert with the description of computational tools available to aid the process of primer/probe design for NATs and INAATs. Besides briefly covering nanoparticles-assisted NATs, a more comprehensive presentation is given on the role CRISPR-based technologies have played in molecular diagnosis. Here we provide examples of a few groundbreaking CRISPR assays that have been developed to counter epidemics and pandemics and outline CRISPR biology, highlighting the role of CRISPR guide RNA and its design in any successful CRISPR-based application. In this respect, we tabularize computational tools that are available to aid the design of guide RNAs in CRISPR-based applications. In the second part of our chapter, we discuss machine learning (ML)- and deep learning (DL)-based computational approaches that facilitate the design of efficient primer and probe for NATs/INAATs and guide RNAs for CRISPR-based applications. Given the role of microRNA (miRNAs) as potential future biomarkers of disease diagnosis, we have also discussed ML/DL-based computational approaches for miRNA-target predictions. Our chapter presents the evolution of nucleic acid-based diagnosis techniques from PCR and INAATs to more advanced CRISPR/Cas-based methodologies in concert with the evolution of deep learning (DL)- and machine learning (ml)-based computational tools in the most relevant application domains.


Assuntos
Aprendizado Profundo , Humanos , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/genética , Aprendizado de Máquina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
8.
J Environ Sci (China) ; 149: 200-208, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181634

RESUMO

The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.


Assuntos
Aerossóis , Monitoramento Ambiental , Análise Espectral Raman , Água , Concentração de Íons de Hidrogênio , Análise Espectral Raman/métodos , Água/química , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Material Particulado/análise
9.
J Environ Sci (China) ; 149: 68-78, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181678

RESUMO

The presence of aluminum (Al3+) and fluoride (F-) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F-) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nmol/L. Subsequently, in the presence of F- ions, fluorescence is quenched, with a detection limit of 47.6 nmol/L. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.


Assuntos
Alumínio , Monitoramento Ambiental , Fluoretos , Aprendizado de Máquina , Alumínio/análise , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Fluorescência
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124956, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151398

RESUMO

A new and rare Salamo-Co(II) complex probe L-Co2+ was designed and synthesised. The structure of the [Co3(L)2(µ-OAc)2(MeOH)2]⋅2H2O complex was obtained by X-ray diffraction experiments. Three Co(II) atoms are in a line in the complex, and all Co(II) atoms form a 6-coordinated octahedral configuration. The probe L-Co2+ selectively recognises tyrosine in DMF/H2O (8:2, v/v). Upon addition of tyrosine, the fluorescence intensity of L-Co2+ was enhanced in a short time. The probe showed high selectivity and sensitivity for tyrosine, detection limit is 4.27 × 10-8 M. The recognition mechanism of probe L-Co2+ for Tyr was inferred by FT-IR spectra, UV spectroscopy, ESI mass spectra and DFT calculations. Finally, due to the simplicity and specificity of the identification process, the probe was also subjected to a test paper experiment and a milk assay.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124974, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151399

RESUMO

Alcoholic liver disease (ALD) is a chronic toxic liver injury caused by long-term heavy drinking. Due to the increasing incidence, ALD is becoming one of important medical tasks. Many studies have shown that the main mechanism of liver damage caused by large amounts of alcohol may be related to antioxidant stress. As an important antioxidant, cysteine (Cys) is involved in maintaining the normal redox balance and detoxifying metabolic function of the liver, which may be closely related to the pathogenesis of ALD. Therefore, it is necessary to develop a simple non-invasive method for rapid monitoring of Cys in liver. Thus, a near-infrared (NIR) fluorescent probe DCI-Ac-Cys which undergoes Cys triggered cascade reaction to form coumarin fluorophore is developed. Using the DCI-Ac-Cys, decreased Cys was observed in the liver of ALD mice. Importantly, different levels of Cys were monitored in the livers of ALD mice taking silybin and curcumin with the antioxidant effects, indicating the excellent therapeutic effect on ALD. This study provides the important references for the accurate diagnosis of ALD and the pharmacodynamic evaluation of silybin and curcumin in the treatment of ALD, and support new ideas for the pathogenesis of ALD.


Assuntos
Cumarínicos , Cisteína , Corantes Fluorescentes , Hepatopatias Alcoólicas , Animais , Cisteína/análise , Cisteína/metabolismo , Cumarínicos/química , Corantes Fluorescentes/química , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Curcumina/farmacologia , Espectrometria de Fluorescência , Silibina/farmacologia , Silibina/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124975, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154402

RESUMO

Epilepsy is one of the most commonly-seen neurological disorders, and both endoplasmic reticulum stress (ERS) and oxidative stress (OS) have been demonstrated to be associated with epileptic seizures. As one of the three endogenous thiol-containing amino acids, cysteine (Cys) is recognized not only as an important biomarker of various biological processes but also widely used as a significant additive in the food industry. However, the exact role that Cys plays in ERS has not been well answered up to now. In this paper, we reported the first flavone-based fluorescent probe (namely BFC) with nice endoplasmic reticulum (ER)-targeting ability, which was capable of monitoring Cys in a fast response (3.0 min), large stokes shift (130 nm) and low detection limit (10.4 nM). The recognition mechanism of Cys could be attributed to the addition-cyclization reaction involving a Cys residue and an acrylate group, resulting in the release of the strong excited-state intramolecular proton transfer (ESIPT) emission molecule of benzoflavonol (BF). The low cytotoxicity and good biocompatibility of the probe BFC allowed for monitoring the fluctuation of endogenous Cys levels under both ERS and OS processes, as well as in zebrafish models of epilepsy. Quantitative determination of Cys with the probe BFC was also achieved in three different food samples. Additionally, a probe-immersed test strips integrated with a smartphone device was successfully constructed for on-site colorimetric detection of Cys. Undoubtedly, our work provided a valuable tool for tracking Cys levels in both an epilepsy model and real food samples.


Assuntos
Cisteína , Retículo Endoplasmático , Epilepsia , Flavonas , Corantes Fluorescentes , Análise de Alimentos , Peixe-Zebra , Corantes Fluorescentes/química , Cisteína/análise , Animais , Epilepsia/diagnóstico , Flavonas/análise , Flavonas/química , Retículo Endoplasmático/metabolismo , Análise de Alimentos/métodos , Espectrometria de Fluorescência/métodos , Humanos , Modelos Animais de Doenças , Limite de Detecção , Estresse do Retículo Endoplasmático
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124957, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154401

RESUMO

Hydrogen sulfide (H2S) has a comprehensive contribution to the normal operation and stability of organisms and is also present in environmental water samples and food deterioration. Thus, it is exceedingly promising and significant to develop a highly sensitive detection technique for tracing H2S. Inspired by this, we designed and synthesized a new fluorescent probe 2-[3-[2-[3-bromo-4-(2,4- dinitrobenzenesulfonate)] ethenyl]-5,5-dimethyl-2-cyclohexen-1-ylidene]propanedinitrile (SP-Br) for hydrosulfide ion detection by introducing bromine atom. Compared with reported H2S probes based on the same fluorescent parent, SP-Br has longer fluorescence emission (λem = 670 nm), shorter response time (3 min), lower detection limit (149 nM), and wider detection range (0-30 nM). SP-Br can emit weak yellow fluorescence, and the emission intensity at 670 nm is considerably enhanced in the presence of hydrosulfide ions. The identification mechanism of hydrosulfide ion by SP-Br was verified by high-resolution mass spectrometry, fluorescence, and UV-vis absorption spectroscopy. In addition, SP-Br has been successfully applied to the monitoring of actual water samples and beer samples and has certain development prospects and value in the fields of environmental pollution and food quality analysis.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124984, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154404

RESUMO

The role of ClO- in the physiological functioning of organisms is significant. In this paper, the four fluorescent probes HONx (HON1, HON2, HON3 and HON4) were prepared based on oxyanthracene through the introduction of different substituents, and their photophysical properties were investigated, among which the AIE effect of HON1 was the most significant, and therefore the fluorescent "turn-off" ClO- probe HON1-CN was chosen to be prepared by constructing the ClO- recognition site hydrazone bond at HON1. The ClO- recognises the hydrazone group in the probe HON1-CN, and when the hydrazone bond is broken, the aldehyde group is released, generating HON1 with yellow fluorescence. The probe HON1-CN is highly selective and stable for the detection of ClO- with a detection limit of 0.48 µM and a more than 10-fold increase in fluorescence intensity when the fluorescence is 'switched on', and to a lesser extent, the probe is also very good for the detection of hypochlorite ClO- in the pericarp. Finally, HON1-CN has also been used to detect the presence of ClO- in HeLa cells and zebrafish.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Espectrometria de Fluorescência , Xantonas , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Xantonas/química , Animais , Ácido Hipocloroso/análise , Humanos , Células HeLa , Frutas/química , Limite de Detecção
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124950, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39133976

RESUMO

Low fluorescence under visible light excitation and catalytic activity limit many applications of graphene quantum dots in optical detection, biosensing, catalysis and biomedical. The paper reports design and synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot (Fe/B-GQD-HSF). The Fe/B-GQD-HSF shows excellent fluorescence behavior and peroxidase-like activity. Excitation of 330 nm ultraviolet light produces the strongest blue fluorescence and excitation of 480 nm visible light produces the strongest yellow fluorescence. The specific activity reaches 92.67 U g-1, which is higher than that of other graphene quantum dots. The Fe/B-GQD-HSF can catalyze oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to form blue compound. Based on this, it was used for colorimetric and fluorescence detection of H2O2. The absorbance at 652 nm linearly increases with the increase of H2O2 concentration between 0.5 and 100 µM with detection limit of 0.43 µM. The fluorescence signal linearly decreases with the increase of H2O2 concentration between 0.05 and 100 µM with detection limit of 0.035 µM. The analytical method has been satisfactorily applied in detection of H2O2 in food. The study also paves one way for design and synthesis of functional graphene quantum dots with ideal fluorescence behavior and catalytic activity.


Assuntos
Boro , Colorimetria , Ácido Fólico , Grafite , Histidina , Peróxido de Hidrogênio , Ferro , Pontos Quânticos , Serina , Pontos Quânticos/química , Grafite/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Colorimetria/métodos , Ácido Fólico/análise , Ácido Fólico/química , Ferro/análise , Ferro/química , Boro/química , Histidina/análise , Histidina/química , Serina/análise , Serina/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Análise de Alimentos/métodos , Peroxidase/química , Peroxidase/metabolismo , Catálise
16.
Skin Res Technol ; 30(9): e70042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233331

RESUMO

BACKGROUND: Value analysis of a small-molecule fluorescent probe for methylation detection in different cervical lesions. MATERIALS AND METHODS: (1) The grayscale values of distinct lesion tissues were remarkably distinct among the four groups (p < 0.05). The comparison of the grayscale value between the two groups showed that the CA group noticeably exceeded the LSIL and cervicitis groups, and the HSIL group was apparently higher than the LSIL and cervicitis groups (p < 0.05); (2) The mean grayscale values of the enrolled subjects were calculated with 55.21 as the midline, with >55.21 as positive and ≤55.21 as negative. RESULTS: The results showed that the positive rate of the cervicitis group was 0.00%, the LSIL group 67.74%, the HSIL group 83.33%, and the CA group 100.00%. The results among the four groups were notably distinct (p < 0.05); (3) The comparison among DAPI, probe, bright, and merged images of cervicitis, LSIL, HSIL, and CA indicated that different cervical lesions were with quite various stains. CONCLUSION: The grayscale value, positive rate, and stained picture of distinct cervical lesions were remarkably different. The small-molecule fluorescent probe has a good value in differentiating cervical lesions and can be considered for popularization and application.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Corantes Fluorescentes , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Adulto , Pessoa de Meia-Idade , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Idoso , Sensibilidade e Especificidade , Cervicite Uterina/metabolismo , Displasia do Colo do Útero/diagnóstico
17.
Food Chem ; 463(Pt 1): 141073, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39241422

RESUMO

Glutathione (GSH) plays a crucial role in several physiological processes, including anti-oxidation and heavy metal detoxification. GSH is produced endogenously in the human body and can also be obtained through diet. The development of fast, highly sensitive, and multi-application fluorescent probes remains a challenging task. In this study, we have designed and synthesized a coumarin-based fluorescent probe (NFRF) for the sensitive and rapid detection of GSH in 100 % aqueous solution. By loading probe NFRF on the filter paper, the real-time visual detection of GSH is achieved in both daylight and fluorescence modes, providing a convenient, economical and rapid on-site detection tool. Probe NFRF could be used for the detection of GSH in real samples, with recoveries rates of 81.74 %-115.12 %. Notably, the probe imaged changes in GSH concentrations in oxidative stress environments and during ferroptosis. This work provides a prospective method for GSH detection in food and complex biological systems.

18.
J Colloid Interface Sci ; 678(Pt B): 50-66, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39241447

RESUMO

HYPOTHESIS: Water-soluble KDP (KH2PO4) crystals possess excellent optical properties and are employed as frequency converters in clean fusion energy. To improve their performances, there is an immediate necessity to lithograph surface nano-patterns on them. Although the Scanning Probe Microscope (SPM) provides a promising way to achieve this purpose through the water menisci, the driving mechanisms of the lithographic behaviors have not yet been revealed. SIMULATIONS AND EXPERIMENTS: Multi-scale investigations are constructed to explore the underlying driving mechanisms. The SPM probe-induced ion diffusion-transport behaviors are investigated by molecular dynamics. The ion adsorption-enrichment mechanisms are revealed by 18 adsorption models via the ab initio. The SPM probe-induced self-assembly experiments are performed to prove the local heavy concentration. A comprehensive model is developed to describe the lithography mechanisms of the probe-induced self-assembly nano-dots on water-soluble substrates. FINDINGS: It is interestingly found that the KDP growth units (H2PO4-) exhibit obvious adsorption-enrichment effect at 3.16 Å from the probe surface, causing local heavy concentration. The H2PO4- would spontaneously adsorb onto the probe surface, which is dominated by the Si-O bonding reactions. The nano-dots with the height of 27 âˆ¼ 48 nm and diameter of 2.0 âˆ¼ 2.7 µm are lithographed on the KDP substrate. The proposed model further confirms that the lithography processes are driven by the solution supersaturation, solute diffusion, and surface free energy.

19.
Anal Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242486

RESUMO

Herein, by combining the benzofuranone-derived fluorophore and the carbamate recognition group, a fluorescent probe named BFO-CarE was developed for monitoring the carboxylesterase (CarE) level in pulmonary cells under the permissive hypercapnia condition. It showed a notable fluorescence response towards CarE at 570 nm under the excitation of 510 nm. The in-solution tests revealed the advantages of BFO-CarE including high sensitivity, high specificity, relatively rapid response, and high steadiness. It was also low-toxic upon the pulmonary cell lines. During the intracellular imaging in pulmonary cells, BFO-CarE achieved the monitoring of the CarE level in both inhibition and activation status. In particular, BFO-CarE realized the visualization of the affection of the permissive hypercapnia condition on the CarE level, which indicated the hypoxia tolerance of CarE. This work was informative for investigating the impact of hypoxia in pulmonary cells, and the corresponding anaesthesia-related approaches.

20.
Cureus ; 16(8): e67175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295718

RESUMO

Background Hepatitis C virus (HCV) infection is a chronic hepatotropic blood-borne infection. The transmission of HCV in patients undergoing hemodialysis (HD) is more common in comparison to the general population due to factors such as frequent blood transfusions, prolonged vascular access, and the potential for nosocomial infections. Western Rajasthan in India is home to numerous teaching and training hospitals that cater to a large number of HD patients. Understanding the seroprevalence and genotypic distribution of HCV in this specific patient population is crucial for assessing the extent of infection within this vulnerable group for targeted surveillance and developing effectively tailored treatment protocols in healthcare settings. Hence, this study was conducted with an aim to determine seroprevalence, seroconversion, and genotypes of HCV in HD patients at a tertiary care hospital. Methods This was a cross-sectional observational study. The duration of the study was from July 2019 to March 2022. In this study, the patients undergoing maintenance HD due to chronic kidney disease (CKD) were recruited. The data collected include patients' demographics, etiology of CKD, underlying other co-morbidities, duration of dialysis, and biochemical and blood count parameters. The patients recruited at the start of the study were screened for anti-HCV antibodies by HCV enzyme-linked immune sorbent assay (ELISA). The anti-HCV antibody-negative patients were followed up for the detection of anti-HCV antibodies. At the end of the follow-up period, all anti-HCV antibody negative samples in the pool of five and all anti-HCV antibody positive samples were subjected to a real-time polymerase chain reaction (RT-PCR) of 5' untranslated region (5'UTR) and core region, followed by line probe assay (LiPA). Results In this study, after applying inclusion and exclusion criteria, a total of 109 patients were recruited, out of which 64 (58.7%) were males and 45 (41.3%) were females. The age range of participants was 11-88 years with a mean and standard deviation of 46.75 and 16.35 years, respectively. A total of 39 patients (20 on screening, 19 on follow-up) were detected anti- HCV antibody positive. By RT-PCR, 24 patients tested HCV RNA positive (10 on screening, 14 on follow-up). Among 24 HCV RNA-positive samples, LiPA showed, HCV genotype 1a (n=21), genotype 3b (n=1), and two samples were detected to be inconclusive. Conclusion The increasing duration of dialysis is significantly associated with acquiring HCV infection. The majority of the cases of CKD in this geographical region are due to hypertensive nephropathy. There can be discordance between antibody and viral RNA positivity in HCV infection. The predominant HCV genotype identified in the dialysis ward of tertiary care hospital was genotype 1a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA