Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 262: 75-88, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541485

RESUMO

Tubulointerstitial fibrosis (TIF) is the most prominent cause which leads to chronic kidney disease (CKD) and end-stage renal failure. Despite extensive research, there have been many clinical trial failures, and there is currently no effective treatment to cure renal fibrosis. This demonstrates the necessity of more effective therapies and better preclinical models to screen potential drugs for TIF. In this study, we investigated the antifibrotic effect of the machine learning-based repurposed drug, lubiprostone, validated through an advanced proximal tubule on a chip system and in vivo UUO mice model. Lubiprostone significantly downregulated TIF biomarkers including connective tissue growth factor (CTGF), extracellular matrix deposition (Fibronectin and collagen), transforming growth factor (TGF-ß) downstream signaling markers especially, Smad-2/3, matrix metalloproteinase (MMP2/9), plasminogen activator inhibitor-1 (PAI-1), EMT and JAK/STAT-3 pathway expression in the proximal tubule on a chip model and UUO model compared to the conventional 2D culture. These findings suggest that the proximal tubule on a chip model is a more physiologically relevant model for studying and identifying potential biomarkers for fibrosis compared to conventional in vitro 2D culture and alternative of an animal model. In conclusion, the high throughput Proximal tubule-on-chip system shows improved in vivo-like function and indicates the potential utility for renal fibrosis drug screening. Additionally, repurposed Lubiprostone shows an effective potency to treat TIF via inhibiting 3 major profibrotic signaling pathways such as TGFß/Smad, JAK/STAT, and epithelial-mesenchymal transition (EMT), and restores kidney function.


Assuntos
Inteligência Artificial , Nefropatias , Camundongos , Animais , Lubiprostona/farmacologia , Reposicionamento de Medicamentos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal , Rim/patologia
2.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069732

RESUMO

Lowe syndrome and Dent II disease are X-linked monogenetic diseases characterised by a renal reabsorption defect in the proximal tubules and caused by mutations in the OCRL gene, which codes for an inositol-5-phosphatase. The life expectancy of patients suffering from Lowe syndrome is largely reduced because of the development of chronic kidney disease and related complications. There is a need for physiological human in vitro models for Lowe syndrome/Dent II disease to study the underpinning disease mechanisms and to identify and characterise potential drugs and drug targets. Here, we describe a proximal tubule organ on chip model combining a 3D tubule architecture with fluid flow shear stress that phenocopies hallmarks of Lowe syndrome/Dent II disease. We demonstrate the high suitability of our in vitro model for drug target validation. Furthermore, using this model, we demonstrate that proximal tubule cells lacking OCRL expression upregulate markers typical for epithelial-mesenchymal transition (EMT), including the transcription factor SNAI2/Slug, and show increased collagen expression and deposition, which potentially contributes to interstitial fibrosis and disease progression as observed in Lowe syndrome and Dent II disease.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Túbulos Renais Proximais/metabolismo , Nefrolitíase/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Mutação , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
3.
Arch Toxicol ; 95(6): 2123-2136, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961089

RESUMO

Antisense oligonucleotides (ASOs) are a promising therapeutic modality. However, failure to predict acute kidney injury induced by SPC5001 ASO observed in a clinical trial suggests the need for additional preclinical models to complement the preceding animal toxicity studies. To explore the utility of in vitro systems in this space, we evaluated the induction of nephrotoxicity and kidney injury biomarkers by SPC5001 in human renal proximal tubule epithelial cells (HRPTEC), cultured in 2D, and in a recently developed kidney proximal tubule-on-a-chip. 2D HRPTEC cultures were exposed to the nephrotoxic ASO SPC5001 or the safe control ASO 556089 (0.16-40 µM) for up to 72 h, targeting PCSK9 and MALAT1, respectively. Both ASOs induced a concentration-dependent downregulation of their respective mRNA targets but cytotoxicity (determined by LDH activity) was not observed at any concentration. Next, chip-cultured HRPTEC were exposed to SPC5001 (0.5 and 5 µM) and 556089 (1 and 10 µM) for 48 h to confirm downregulation of their respective target transcripts, with 74.1 ± 5.2% for SPC5001 (5 µM) and 79.4 ± 0.8% for 556089 (10 µM). During extended exposure for up to 20 consecutive days, only SPC5001 induced cytotoxicity (at the higher concentration; 5 µM), as evaluated by LDH in the perfusate medium. Moreover, perfusate levels of biomarkers KIM-1, NGAL, clusterin, osteopontin and VEGF increased 2.5 ± 0.2-fold, 3.9 ± 0.9-fold, 2.3 ± 0.6-fold, 3.9 ± 1.7-fold and 1.9 ± 0.4-fold respectively, in response to SPC5001, generating distinct time-dependent profiles. In conclusion, target downregulation, cytotoxicity and kidney injury biomarkers were induced by the clinically nephrotoxic ASO SPC5001, demonstrating the translational potential of this kidney on-a-chip.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Oligonucleotídeos Antissenso/toxicidade , Oligonucleotídeos/toxicidade , Injúria Renal Aguda/patologia , Biomarcadores/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Túbulos Renais Proximais/patologia , L-Lactato Desidrogenase/metabolismo , Dispositivos Lab-On-A-Chip , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , RNA Mensageiro/metabolismo , Fatores de Tempo
4.
J Pharm Sci ; 110(4): 1601-1614, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545187

RESUMO

Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-ß-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).


Assuntos
Túbulos Renais Proximais , Dispositivos Lab-On-A-Chip , Animais , Interações Medicamentosas , Humanos , Rim , Reprodutibilidade dos Testes
5.
Biochim Biophys Acta Gen Subj ; 1864(1): 129433, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520681

RESUMO

BACKGROUND: Kidney disease modeling and assessment of drug-induced kidney injury can be advanced using three-dimensional (3D) microfluidic models that recapitulate in vivo characteristics. Fluid shear stress (FSS) has been depicted as main modulator improving in vitro physiology in proximal tubule epithelial cells (PTECs). We aimed to elucidate the role of FSS and primary cilia on transport activity and morphology in PTECs. METHODS: Human conditionally immortalized PTEC (ciPTEC-parent) was cultured in a microfluidic 3D device, the OrganoPlate, under a physiological peak FSS of 2.0 dyne/cm2 or low peak FSS of 0.5 dyne/cm2. Upon a 9-day exposure to FSS, albumin-FITC uptake, activity of P-glycoprotein (P-gp) and multidrug resistance-associated proteins 2/4 (MRP2/4), cytotoxicity and cell morphology were determined. RESULTS: A primary cilium knock-out cell model, ciPTEC-KIF3α-/-, was successfully established via CRISPR-Cas9 genome editing. Under physiological peak FSS, albumin-FITC uptake (p = .04) and P-gp efflux (p = .002) were increased as compared to low FSS. Remarkably, a higher albumin-FITC uptake (p = .03) and similar trends in activity of P-gp and MRP2/4 were observed in ciPTEC-KIF3α-/-. FSS induced cell elongation corresponding with the direction of flow in both cell models, but had no effect on cyclosporine A-induced cytotoxicity. CONCLUSIONS: FSS increased albumin uptake, P-gp efflux and cell elongation, but this was not attributed to a mechanosensitive mechanism related to primary cilia in PTECs, but likely to microvilli present at the apical membrane. GENERAL SIGNIFICANCE: FSS-induced improvements in biological characteristics and activity in PTECs was not mediated through a primary cilium-related mechanism.


Assuntos
Injúria Renal Aguda/metabolismo , Cílios/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Transporte Biológico/efeitos dos fármacos , Cílios/efeitos dos fármacos , Ciclosporina/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/metabolismo , Mecanotransdução Celular/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA