Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Plant Cell Environ ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420723

RESUMO

Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.

2.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339283

RESUMO

Xanthine oxidase (XOD) is a key enzyme that promotes the oxidation of xanthine/hypoxanthine to form uric acid, and the accumulation of uric acid leads to hyperuricaemia. The prevalence of gout caused by hyperuricaemia is increasing year by year. TAOZHI (TZ) can be used for the treatment of rheumatic arthralgia due to qi stagnation and blood stasis and contains a large number of polyphenolic components. The aim of this study was to investigate the relationship between chromatograms and XOD inhibition of 21 batches of TZ total polyphenol extract samples. Chemometric methods such as grey correlation analysis, bivariate correlation analysis, and partial least squares regression were used to identify the active ingredient groups in the total polyphenol extracts of TZ, which were validated using molecular docking techniques. The total polyphenol content contained in the 21 batches did not differ significantly, and all batches showed inhibitory effects on XOD. Spectroeffect correlation analysis showed that the inhibitory effect of TZ on XOD activity was the result of the synergistic effect of multiple components, and the active component groups screened to inhibit XOD were F2 (4-O-Caffeoylquinic acid), F4, and F10 (naringenin). The molecular docking results showed that the binding energies of all nine dockings were lower than -7.5 kcal/mol, and the binding modes included hydrogen bonding, hydrophobic forces, salt bridges, and π-staking, and the small molecules might exert their pharmacological effects by binding to XOD through the residue sites of the amino acids, such as threonine, arginine, and leucine. This study provides some theoretical basis for the development and utilisation of TZ total polyphenols.


Assuntos
Simulação de Acoplamento Molecular , Polifenóis , Xantina Oxidase , Polifenóis/química , Polifenóis/farmacologia , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Quimiometria , Humanos
4.
Plants (Basel) ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39204723

RESUMO

Calcium foliar applications are known to effectively enhance peach quality; however, the optimal implementation strategy regarding fruit developmental stages and cultivars remains unclear. In this study, three different moments of fruit Ca applications in peach and nectarine are tested: Early season, Mid-season, and Late season. For this aim, the 44Ca isotope was used as a tracer, enabling the quantification and location of the Ca derived from the foliar fertilizer. Stone, flesh, and skin 44Ca enrichment was separately analyzed at harvest. The results indicate that Ca absorption in the fruits from external CaCl2 applications was influenced by the timing of the application during fruit development, with Late-season applications proving to be the most effective in increasing the Ca content in the fruit, corresponding with a higher fruit size at the application moment. Nevertheless, no differences in the absorption efficiency were found between the three timings of the application. Furthermore, the Ca from the foliar fertilizer in the fruit predominately remained in the flesh, followed by the skin. The Ca derived from the foliar fertilizer reached the stone in all of the experimental situations, but the Early- and Mid-season applications resulted in the highest amount of Ca derived from the fertilizer in this part of the fruit. Interestingly, the peach exhibited a higher Ca absorption efficiency compared to the nectarine, likely due to the presence of trichomes that retain the foliar fertilizer on the fruit surface. In conclusion, the Ca absorption and distribution in peaches depends on the cultivar and timing of the Ca application.

5.
Talanta ; 280: 126702, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39180873

RESUMO

A high performance liquid chromatography-ultraviolet-visible detector-electrospray ionization-ion trap-time-of-flight-mass spectrometry-total antioxidant capacity determination (HPLC-UVD-ESI-IT-TOF-MS-TACD) new online technique was developed for efficient screening of potential antioxidant active components in Prunus persica flowers (PPF) from 4 origins. Through this online system, 46 compounds were initially identified, while 20 compounds with DPPH binding activity and 21 compounds with FRAP binding activity were detected. The antioxidant activities of 9 compounds obtained from the screening were then validated in DNA oxidative damage protection study. The results showed that this online system can cope well with the complexity of the samples. This also provides technical basis for rapid screening of antioxidant resources of PPF. In short, this study made the chemical composition of PPF more abundant and its potential antioxidant active compounds more explicit, which provided new ideas for the detection and development of natural antioxidants and provided scientific basis for PPF as functional food.


Assuntos
Antioxidantes , Dano ao DNA , Flores , Prunus persica , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/análise , Flores/química , Dano ao DNA/efeitos dos fármacos , Prunus persica/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Picratos/antagonistas & inibidores , Picratos/química
6.
J Integr Plant Biol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185667

RESUMO

WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.

7.
Plants (Basel) ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931035

RESUMO

To prevent frost damage in fruit trees, growers employ passive and active methods, and one of these second methods is the use of biostimulant compounds against abiotic stress. In this study, two trials were conducted to evaluate the effectiveness of a multi-attribute approach biostimulant-containing α-tocopherol, boron, and glycols, in peach ('UFO-4' cultivar) and almond ('Vairo' cultivar) trees. In a first trial, one-year-old shoots with flowers were collected after 24 h, 48 h, and 96 h of the biostimulant applications. Two different application rates of the product (1000 and 2000 cc ha-1) were tested and compared to an untreated control. In a second trial, one-year-old shoots with fruitlets were collected after 24 h of the biostimulant applications. In this case, only an application rate (2000 cc ha-1) was tested. In the two trials, the collected one-year-old shoots were subjected to different frost temperatures using a controlled environment chamber. The damage level was assessed by a morphological analysis of the flowers and fruitlets 96 h after each frost cycle simulation. The lethal temperatures (LT10, LT50, and LT90) of each treatment were calculated by probit analysis. The product applied 24 h and 48 h before the frost simulations significantly decreased the LT10 and LT50 in 1.5 °C in peach flowers, and 2.5 °C in almond flowers (a temperature reduction of 50% and 75%, respectively). These results were more consistent when the application volume was 2000 cc ha-1, instead of 1000 cc ha-1. Significant differences between treated and non-treated fruitlets were observed only in almond fruitlets, with LT10 and LT50 being 0.5 °C lower in treated fruitlets (20% reduction). In conclusion, the multi-attribute approach biostimulant applied 24 or 48 h before the frost reduced the mortality of peach and almond flowers, but its effectiveness to protect fruitlets after bloom was inconsistent.

8.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872462

RESUMO

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Plantas , Prunus persica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sequência de Bases , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas
9.
Front Plant Sci ; 15: 1302975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726296

RESUMO

Peaches are susceptible to various environmental stresses. Particularly in late spring, freezing temperatures can damage peaches and consequently, affect their productivity. Therefore, flowering delay is a prominent strategy for avoiding spring frost damage. Our previous study confirmed that treatment with 5% sodium alginate and 100 mM CaCl2 (5AG) to avoid frost damage during the blooming stage delays flowering. To reveal the flowering delay mechanism of peaches, this study systematically analyzed the modification of amino acid profiles in control and 5AG-treated peach plants at different day intervals. Our findings indicate that arginine (Arg), glutamate (Glu), and proline (Pro) levels differed between the control and 5AG-treated peach shoots throughout the phenological development of flower buds. Furthermore, two amino acids (Arg and Glu) are involved in the Pro pathway. Thus, using a computational metabolomics method, Pro biosynthesis and its characteristics, gene ontology, gene synteny, cis-regulatory elements, and gene organizations were examined to decipher the involvement of Pro metabolism in peach flowering delay. In addition, qRT-PCR analysis revealed the transcriptional regulation of Pro-related and flowering-responsive genes and their role in flowering delay. Overall, this pilot study provides new insights into the role of Pro in the flowering delay mechanisms in Prunus persica through 5AG treatment.

10.
J Fungi (Basel) ; 10(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786695

RESUMO

Nectarines can be affected by many diseases, resulting in significant production losses. Natural products, such as essential oils (EOs), are promising alternatives to pesticides to control storage rots. This work aimed to test the efficacy of biofumigation with EOs in the control of nectarine postharvest diseases while also evaluating the effect on the quality parameters (firmness, total soluble solids, and titratable acidity) and on the fruit fungal microbiome. Basil, fennel, lemon, oregano, and thyme EOs were first tested in vitro at 0.1, 0.5, and 1.0% concentrations to evaluate their inhibition activity against Monilinia fructicola. Subsequently, an in vivo screening trial was performed by treating nectarines inoculated with M. fructicola, with the five EOs at 2.0% concentration by biofumigation, performed using slow-release diffusers placed inside the storage cabinets. Fennel, lemon, and basil EOs were the most effective after storage and were selected to be tested in efficacy trials using naturally infected nectarines. After 28 days of storage, all treatments showed a significant rot reduction compared to the untreated control. Additionally, no evident phytotoxic effects were observed on the treated fruits. EO vapors did not affect the overall quality of the fruits but showed a positive effect in reducing firmness loss. Metabarcoding analysis showed a significant impact of tissue, treatment, and sampling time on the fruit microbiome composition. Treatments were able to reduce the abundance of Monilinia spp., but basil EO favored a significant increase in Penicillium spp. Moreover, the abundance of other fungal genera was found to be modified.

11.
Int J Biol Macromol ; 266(Pt 2): 131293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565368

RESUMO

The major latex proteins/ripening-related proteins are a subfamily of the Bet v 1 protein superfamily and are commonly involved in plant development and responses to various stresses. However, the functions of MLPs in the postharvest cold storage of fruits remain uninvestigated. Herein, we identified 30 MLP genes in the peach (Prunus persica) genome that were clustered into three subgroups. Chromosomal location analysis revealed that the PpMLP genes were unevenly distributed on five of the eight peach chromosomes. Synteny analysis of the MLP genes between peach and seven other plant species (five dicotyledons and two monocotyledons) explored their evolutionary characteristics. Furthermore, the PpMLP promoters contained cis-elements for multiple hormones and stress responses. Gene expression analysis revealed that PpMLPs participated in chilling stress responses. Ectopic expression of PpMLP10 in Arabidopsis improved chilling stress tolerance by decreasing membrane damage and maintaining membrane stability. Additional research confirmed that PpWRKY2 participates in PpMLP10-mediated chilling stress by binding to its promoter. Collectively, these results suggest the role of PpMLP10 in enhancing chilling stress tolerance, which is significant for decreasing chilling injury during the postharvest cold storage of peaches.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus persica , Prunus persica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Estresse Fisiológico/genética , Filogenia
12.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611352

RESUMO

Fresh-cut processing is a good strategy to enhance the commercialization of peaches and nectarines, which easily deteriorate during low-temperature storage mostly due to the occurrence of chilling injury. Although several studies have been performed to improve the shelf-life of fresh-cut stone fruit, the achievement of high-quality fresh-cut peaches and nectarines still constitutes a challenge. The present study aimed to gain insights into the evolution of the postharvest quality of fresh-cut nectarines (Prunus persica L. Batsch) Big Bang, cold-stored at two different storage temperatures (4 and 8 °C) for up to 10 days. Several aspects influencing the quality traits (sensory and postharvest quality parameters; the profile of phenolic and volatile organic compounds (VOCs)) were explored to predict the marketable life of the fresh-cut nectarines. The respiration rate was higher in samples stored at 4 °C, while the browning process was more evident in fruit stored at 8 °C. Partial Least Squares Regression performed on VOCs showed that samples stored at 4 °C and 8 °C presented a different time evolution during the experiment and the trajectories depended on the interaction between time and temperature. Moreover, Multiple Linear Regression analysis discovered that the 17 VOCs affected by the storage conditions seemed to suggest that no chilling injury was detected for nectarines Big Bang. In conclusion, this approach could also be used with other nectarine cultivars and/or different stone fruits.

13.
Plant Physiol Biochem ; 208: 108449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503188

RESUMO

Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.


Assuntos
Frutas , Fotossíntese , Salicilanilidas , Frutas/metabolismo , Glucose/metabolismo , Frutose/metabolismo
14.
Genes (Basel) ; 15(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38254960

RESUMO

Organic matter (OM) amendments are often encouraged in sustainable agriculture programs but can create heterogeneous soil environments when applied to perennial crops such as peaches (Prunus persica (L.) Batsch). To better understand the responses of peach roots to non-uniform soil conditions, transcriptomic analysis was performed in a split-root study using uniform soil (the same soil type for all roots) or non-uniform soil (different soil types for each half of the root system) from either (1) autoclaved sand (S), (2) autoclaved sand with autoclaved compost (A), or (3) autoclaved sand with compost which included inherent biological soil life (B). Each uniform soil type (S, A, and B) was grouped and compared by uniform and non-uniform soil comparisons for a total of nine treatments. Comparisons revealed peach roots had differentially expressed genes (DEGs) and gene ontology terms between soil groups, with the S and B groups having a range of 106-411 DEGs and the A group having a range of 19-94 DEGs. Additionally, six modules were identified and correlated (p > 0.69) for six of the nine treatment combinations. This study broadly highlights the complexity of how OM and biological life in the rhizosphere interact with immediate and distant roots and sheds light on how non-homogenous soil conditions can influence peach root gene expression.


Assuntos
Prunus persica , Solo , Prunus persica/genética , Areia , Agricultura , Expressão Gênica
15.
Plants (Basel) ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202438

RESUMO

Class III peroxidases are plant-specific and play a key role in the response to biotic and abiotic stresses, as well as in plant growth and development. In this study, we investigated 60 POD genes from Prunus persica based on genomic and transcriptomic data available in NCBI and analysed the expression of individual genes with qPCR. Peroxidase genes were clustered into five subgroups using the phylogenetic analysis. Their exon-intron structure and conserved motifs were analysed. Analysis of the transcriptomic data showed that the expression of PpPOD genes varied significantly in different tissues, at different developmental stages and under different stress treatments. All genes were divided into low- and high-expressed genes, and the most highly expressed genes were identified for individual tissues (PpPOD12 and PpPOD42 in flower buds and PpPOD73, PpPOD12, PpPOD42, and PpPOD31 in fruits). The relationship between cold tolerance and the level of peroxidase expression was revealed. These studies were carried out for the first time in the peach and confirmed that chilling tolerance may be related to the specificity of antioxidant complex gene expression.

16.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203777

RESUMO

The brown marmorated stink bug (BMSB; Halyomorpha halys Stål.) is a highly destructive and polyphagous invasive pest that poses a serious threat to more than a hundred reported host plants. In the current study, the metabolic response of peach fruit of two cultivars-'Maria Marta' and 'Redhaven'-to BMSB infestation was studied using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). In general, a strong phenolic response to BMSB infestation in peach flesh in the injury zone was observed, with flavanol content increasing by 2.4-fold, hydroxycinnamic acid content by 5.0-fold, flavonol content by 3.2-fold, flavanone content by 11.3-fold, and dihydrochalcones content by 3.2-fold compared with the undamaged tissue in the cultivar 'Maria Marta'. The phenolic response in the 'Redhaven' cultivar was even stronger. Consequently, the total phenolic content in the injured flesh also increased, 3.3-fold in 'Maria Marta' and 6.9-fold in 'Redhaven', compared with the uninjured flesh. Infestation with BMSB induced the synthesis of cyanidin-3-glucoside, which is not normally present in peach flesh. In comparison, the phenolic response was lower in peach peel, especially in the cultivar 'Maria Marta'. The study showed that both peach cultivars reacted to BMSB infestation with an increase in phenolic content in the peach flesh, but in a limited area of injury.


Assuntos
Heterópteros , Prunus persica , Animais , Frutas , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos , Fenóis
17.
New Phytol ; 241(2): 632-649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933224

RESUMO

Although maturity date (MD) is an essential factor affecting fresh fruit marketing and has a pleiotropic effect on fruit taste qualities, the underlying mechanisms remain largely unclear. In this study, we functionally characterized two adjacent NAM-ATAF1/2-CUC2 (NAC) transcription factors (TFs), PpNAC1 and PpNAC5, both of which were associated with fruit MD in peach. PpNAC1 and PpNAC5 were found capable of activating transcription of genes associated with cell elongation, cell wall degradation and ethylene biosynthesis, suggesting their regulatory roles in fruit enlargement and ripening. Furthermore, PpNAC1 and PpNAC5 had pleiotropic effects on fruit taste due to their ability to activate transcription of genes for sugar accumulation and organic acid degradation. Interestingly, both PpNAC1 and PpNAC5 orthologues were found in fruit-producing angiosperms and adjacently arranged in all 91 tested dicots but absent in fruitless gymnosperms, suggesting their important roles in fruit development. Our results provide insight into the regulatory roles of NAC TFs in MD and fruit taste.


Assuntos
Prunus persica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus persica/genética , Frutas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Saudi J Biol Sci ; 30(12): 103866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38073660

RESUMO

Peach is a fruit highly appreciated by consumers; however, it is highly perishable, so drying is an alternative to preserve its physical and chemical properties. In this study, the effect of different drying methods (oven, solar, and open sun) and slice thicknesses (0.5, 1.0, and 1.5 cm) on quality, shelf life, color, total phenol, flavonoid, reducing sugar, non reducing sugar, ascorbic acid contents and antioxidant capacity of peach (Prunus persica L. Cv. Indian blood red), were evaluated. The results showed that, 0.5 cm slice thickness recorded the best results with minimum moisture content (%), drying time (7 hrs), titratable acidity (%), reducing sugars (%), non-reducing sugars (%), total soluble solids (°Brix), disease incidence (%), drying rate, TSS-Acid ratio, ascorbic acid, color and flavor, and total phenolic contents. Storage conditions showed significant results on 90 days of storage with maximum total soluble solids (°Brix), TSS-Acid ratio, reducing sugars (%), minimum titratable acidity (%), ascorbic acid, disease incidence (%), and non-reducing sugars (%), while color and flavor also retained. Peach fruits sliced at 0.5 cm thickness and dried in a solar collector may be considered best to retain the bio chemical attributes for 90 days and solar collector considered as environmentally friendly technology.

19.
Mol Hortic ; 3(1): 24, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953307

RESUMO

Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.

20.
J Food Sci ; 88(11): 4544-4559, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812169

RESUMO

Numerous biochemical processes are involved in fruit maturation, such as ethylene production, phenolic compounds accumulation, and antioxidant enzymes production. Therefore, the aim of the present work was the evaluation of ethylene production, and the bioactive compounds change in the exocarp and mesocarp of five peach [Prunus persica (L.)] cultivars during three ripening stages, (1) early ripening (ER), (2) commercial maturation, and (3) full ripening (FR) in order to establish the best stage to harvest each peach variety. The experiment was applied to five peach cultivars growing within an arid bioclimatic environment covering the whole peach production season: two early cultivars, Flordastar and Early Maycrest; one variety of mid-season Rubirich; and two late cultivars, Sweet Cap and O'Henry. Ethylene production, phenolic compounds, and oxidative stress through antioxidant enzyme activities (catalase, peroxidases [PODs] Class III, and ascorbate-POD), malondialdehyde (MDA), and hydrogen peroxide (H2 O2 ) production were determined in the exocarp and mesocarp of peach fruits. The results showed a significant increase in ethylene production during fruit ripening. However, a parallel decrease in the level of phenolic compounds as well as in antioxidant enzyme activities was observed. The FR stage was also characterized by an important accumulation of MDA and H2 O2 . In conclusion, important changes in fruit quality associated with the production level of ethylene were observed. Fruits harvested during the ER stage would be more suitable for delivering to distant markets and more appreciated by the peach industries due to their highest phenolic acid content, best antioxidant enzyme activities, and lowest oxidative stress indicator.


Assuntos
Prunus persica , Antioxidantes/análise , Etilenos/análise , Frutas/química , Proteínas de Plantas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA