Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.348
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093066

RESUMO

OBJECTIVE: In this study, we developed an exercise training protocol for assessing both blood pressure dynamics and mRNA expression levels of purine receptors in various vascular tissues during physical activity. The objective is to assess the impact of exercise training on blood pressure regulation in spontaneously hypertensive rats (SHR) and purine receptors in vascular tissues. METHODS: Wistar Kyoto (WKY) and SHR rats were randomly allocated into sedentary (Sed) and exercise training (ExT) groups. Rats in the Sed groups were allowed unrestricted movement, whereas those in the ExT groups underwent a 16-week regimen of low- to moderate-intensity treadmill exercise. Throughout the intervention period, blood pressure measurements and body weight recordings were conducted. Additionally, mRNA expressions of purine receptors P2X1, P2Y1, and P2Y2 in renal artery (RA), internal carotid artery (Int), thoracic aorta (Aor), and caudal artery (Cau) tissues were assessed. RESULTS: In the Sed group, body weight of SHR rats was observed to be lower compared to the three other groups. Over the course of the exercise regimen, blood pressure in the ExT group of SHR rats reduced gradually, converging towards levels similar to those observed in WKY rats by the conclusion of the exercise period. Regarding mRNA expression patterns of P2X1 receptors across the four blood vessels, WKY and SHR rats demonstrated similar sequences, consistently displaying the highest expression levels in the Cau. Conversely, mRNA expressions of P2Y1 and P2Y2 receptors exhibited distinct sequences across the four blood vessels in both WKY and SHR rats. Notably, compared to the Sed group of WKY rats, mRNA expression of P2X1 receptor in the Int of SHR rats revealed an increase, while expressions in the Aor of WKY rats and the Cau of SHR rats decreased following exercise. Expression of P2Y1 receptor mRNA decreased across all four types of blood vessels in SHR rats. Post-exercise, P2Y1 receptor mRNA expression increased in the Aor, decreased in the Cau of WKY rats, and increased in the Int and renal artery (RA) of SHR rats. Conversely, expressions of P2Y2 receptor mRNA decreased in the Int and Aor of SHR rats. Except for the Aor of WKY rats, expressions of P2Y2 receptor mRNA increased in the other arteries of both rat types following exercise. CONCLUSION: Differences in the distribution of purine receptor subtypes among distinct arterial segments in both WKY and SHR rats were observed. Exercise training was found to enhance mRNA expression levels of P2Y receptors in these rat models. This finding implies that exercise training might reduce hypertension in SHR rats by bolstering the purinergic relaxation response.

2.
J Biol Chem ; : 107620, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098527

RESUMO

In this study, we advance our understanding of the spatial relationship between the purinosome, a liquid condensate consisting of six enzymes involved in de novo purine biosynthesis, and mitochondria. Previous research has shown that purinosomes move along tubulin toward mitochondria, suggesting a direct uptake of glycine from mitochondria. Here, we propose that the purinosome is located proximally to the mitochondrial transporters SLC25A13 and SLC25A38, facilitating the uptake of glycine, aspartate, and glutamate, essential factors for purine synthesis. We utilized the proximity ligation assay (PLA) and APEX proximity labeling to investigate the association between purinosome proteins and mitochondrial transporters. Our results indicate that purinosome assembly occurs close to the mitochondrial membrane under purine-deficient conditions, with the transporters migrating to be adjacent to the purinosome. Furthermore, both targeted and non-targeted analyses suggest that the SLC25A13-APEX2-V5 probe accurately reflects endogenous cellular status. These findings provide insights into the spatial organization of purine biosynthesis and lay the groundwork for further investigations into additional proteins involved in this pathway.

3.
IUBMB Life ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134088

RESUMO

Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.

4.
Mol Biotechnol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117978

RESUMO

Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.

5.
Bioorg Chem ; 151: 107681, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39106711

RESUMO

Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 µM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 µM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.

6.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131357

RESUMO

The regeneration of lost tissue requires biosynthesis of metabolites needed for cell proliferation and growth. Among these are the purine nucleotides ATP and GTP, which are required for diverse cellular processes including DNA synthesis, cytoskeletal assembly, and energy production. The abundance and balance of these purines is regulated by inosine monophosphate dehydrogenase 2 (IMPDH2), which catalyzes the committing step of GTP synthesis. IMPDH2 is typically expressed at high levels in proliferating cells and assembles into filaments that resist allosteric inhibition under conditions of high GTP demand. Here we asked whether IMPDH2 is required in the highly proliferative context of regeneration, and whether its assembly into filaments takes place in regenerating tissue. We find that inhibition of IMPDH2 leads to impaired tail regeneration and reduced cell proliferation in the tadpole Xenopus tropicalis. Upon treatment with IMPDH inhibitors, we find that both endogenous and fluorescent fusions of IMPDH2 robustly assemble into filaments throughout the tadpole tail, and that the regenerating tail creates a sensitized condition for filament formation. These findings clarify the role of purine biosynthesis in regeneration and reveal that IMPDH2 enzyme filament formation is a biologically relevant mechanism of regulation in vertebrate regeneration.

7.
Front Plant Sci ; 15: 1425944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109058

RESUMO

Heat stress is a prevalent factor that significantly damages crops, especially with the ongoing global warming and increasing frequency of extreme weather events. Tobacco is particularly sensitive to temperature fluctuations, experiencing reduced yield and quality under high temperatures. However, the underlying molecular mechanisms of heat resistance in tobacco remain poorly understood. This study comprehensively analyzed biochemical, transcriptomic, and metabolomic responses to heat stress on the root and shoot of the tobacco cultivar K326 compared to control conditions. Heat stress significantly increased the activities of antioxidant enzymes (CAT, POD, and SOD) and levels of osmotic mediators (soluble sugars, sucrose, and proline) in the shoot. Furthermore, transcriptome analysis identified 13,176 differentially expressed genes (DEGs) in the root (6,129 up-regulated and 7,047 down-regulated) and 12,283 DEGs (6,621 up-regulated and 5,662 down-regulated) in the shoot. The root had 24 enriched KEGG pathways, including phenylpropanoid metabolism, while the shoot had 32 significant pathways, such as galactose metabolism and MAPK signaling. The metabolomic data identified 647 metabolites in the root and 932 in the shoot, with carbohydrates and amino acids being the main categories. The root had 116 differentially abundant metabolites (DAMs) (107 up-regulated and 9 down-regulated), and the shoot contained 256 DAMs (251 up-regulated and 5 down-regulated). Joint transcriptome and metabolome analysis showed that galactose metabolism and starch and sucrose metabolism were co-enriched in both tissues. In contrast, amino sugar and nucleotide sugar metabolism was enriched in the root, and purine metabolism in the shoot. The purine metabolic pathway in the shoot can modulate the expression of MYB transcription factors by influencing ABA synthesis and signaling, thereby controlling the accumulation of HSPs, raffinose, sucrose, and trehalose to enhance heat tolerance. Furthermore, NtMYB78, an MYB transcription factor, enhances tolerance for heat stress in tobacco. This research offers a foundational framework for investigating and implementing heat-resistant genes and metabolic pathways in the root and shoot of tobacco seedlings.

8.
Cell Metab ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111307

RESUMO

Choline is an essential nutrient for the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism with a critical step being its import into mitochondria. However, the underlying mechanisms and biological significance remain poorly understood. Here, we report that SLC25A48, a previously uncharacterized mitochondrial inner-membrane carrier protein, controls mitochondrial choline transport and the synthesis of choline-derived methyl donors. We found that SLC25A48 was required for brown fat thermogenesis, mitochondrial respiration, and mitochondrial membrane integrity. Choline uptake into the mitochondrial matrix via SLC25A48 facilitated the synthesis of betaine and purine nucleotides, whereas loss of SLC25A48 resulted in increased production of mitochondrial reactive oxygen species and imbalanced mitochondrial lipids. Notably, human cells carrying a single nucleotide polymorphism on the SLC25A48 gene and cancer cells lacking SLC25A48 exhibited decreased mitochondrial choline import, increased oxidative stress, and impaired cell proliferation. Together, this study demonstrates that SLC25A48 regulates mitochondrial choline catabolism, bioenergetics, and cell survival.

9.
Nutrients ; 16(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125294

RESUMO

Immunodeficiency can disrupt normal physiological activity and function. In this study, donkey bone collagen peptide (DP) and its iron chelate (DPI) were evaluated their potential as immunomodulators in cyclophosphamide (Cytoxan®, CTX)-induced Balb/c mice. The femoral tissue, lymphocytes, and serum from groups of mice were subjected to hematoxylin and eosin (H&E) staining, methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, a non-targeted metabolomics analysis based on UPLC-MS/MS and a reverse transcription polymerase chain reaction (RT-qPCR) technology were used to explore the specific metabolic pathways of DPI regulating immunocompromise. The results showed that CTX was able to significantly reduce the proliferative activity of mouse splenic lymphocytes and led to abnormal cytokine expression. After DP and DPI interventions, bone marrow tissue damage was significantly improved. In particular, DPI showed the ability to regulate the levels of immune factors more effectively than Fe2+ and DP. Furthermore, metabolomic analysis in both positive and negative ion modes showed that DPI and DP jointly regulated the levels of 20 plasma differential metabolites, while DPI and Fe2+ jointly regulated 14, and all 3 jointly regulated 10. Fe2+ and DP regulated energy metabolism and pyrimidine metabolism pathways, respectively. In contrast, DPI mainly modulated the purine salvage pathway and the JAK/STAT signaling pathway, which are the key to immune function. Therefore, DPI shows more effective immune regulation than Fe2+ and DP alone, and has good application potential in improving immunosuppression.


Assuntos
Colágeno , Ciclofosfamida , Equidae , Quelantes de Ferro , Camundongos Endogâmicos BALB C , Animais , Colágeno/metabolismo , Quelantes de Ferro/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Imunossupressores/farmacologia , Metabolômica , Citocinas/metabolismo , Masculino , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Terapia de Imunossupressão
10.
Infect Immun ; : e0026624, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133016

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation of S. Typhimurium biology during infection.

11.
Microbiol Spectr ; : e0084424, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166854

RESUMO

Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into "selenoproteins" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen. While SDMHs have been biochemically analyzed, the genes responsible for the insertion and maturation of the selenium cofactor lack characterization. In this study, we utilized the nosocomial pathogen Clostridioides difficile as a genetic model to begin characterizing this poorly understood selenium utilization pathway and its role in the catabolism of host-derived purines. We first observed that C. difficile could utilize hypoxanthine, xanthine, or uric acid to overcome a growth defect in a minimal medium devoid of glycine and threonine. However, strains lacking selenophosphate synthetase (selD mutants) still grew poorly in the presence of xanthine and uric acid, suggesting a selenium-dependent purinolytic process. Previous computational studies have identified yqeB and yqeC as potential candidates for cofactor maturation, so we subsequently deleted each gene using CRISPR-Cas9 technology. We surprisingly found that the growth of the ΔyqeB mutant in response to each purine was similar to the behavior of the selD mutants, while the ΔyqeC mutant exhibited no obvious phenotype. Our results suggest an important role for YqeB in selenium-dependent purine catabolism and also showcase C. difficile as an appropriate model organism to study the biological use of selenium.IMPORTANCEThe apparent modification of bacterial molybdenum hydroxylases with a catalytically essential selenium cofactor is the least understood mechanism of selenium incorporation. Selenium-dependent molybdenum hydroxylases play an important role in scavenging carbon and nitrogen from purines for purinolytic clostridia. Here, we used Clostridioides difficile as a genetic platform to begin dissecting the selenium cofactor trait and found genetic evidence for a selenium-dependent purinolytic pathway. The absence of selD or yqeB-a predicted genetic marker for the selenium cofactor trait-resulted in impaired growth on xanthine and uric acid, known substrates for selenium-dependent molybdenum hydroxylases. Our findings provide a genetic foundation for future research of this pathway and suggest a novel metabolic strategy for C. difficile to scavenge host-derived purines from the gut.

12.
J Nutr Biochem ; : 109737, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147244

RESUMO

BACKGROUND: This study aimed to identify metabolic alterations in the small intestine of newborn rats with intrauterine growth restriction (IUGR), a condition linked to intestinal dysfunction. METHODS: Pregnant Sprague Dawley rats underwent bilateral uterine artery ligation on gestational day 17 to induce intrauterine growth restriction or sham surgery. Rat pups were delivered spontaneously on gestational day 22. Small intestine tissues were collected on postnatal days 0 and 7 from offspring. Liquid chromatography-mass spectrometry analysis was performed to investigate untargeted metabolomic profiles. Western blot analysis assessed protein expression of key regulators. RESULTS: Newborn rats with intrauterine growth restriction exhibited distinct small intestine metabolic profiles compared to controls on postnatal day 0. Notably, significant alterations were observed in purine metabolism, the pentose phosphate pathway, and related pathways. Western blot analysis revealed a decrease expression in transketolase, a key enzyme of the pentose phosphate pathway, suggesting impaired activity of the pentose phosphate pathway. Additionally, decreased expression of tight junction proteins ZO-1 and occludin indicated compromised intestinal barrier function in rats with intrauterine growth restriction. Similar metabolic disruptions persisted on postnatal day 7, with further reductions in tricarboxylic acid cycle intermediates and folate biosynthesis precursors. Interestingly, lysyl-glycine, a protein synthesis marker, was elevated in rats with intrauterine growth restriction. CONCLUSIONS: Our findings reveal a distinct metabolic signature in the small intestine of neonatal rats with intrauterine growth restriction, characterized by disruptions in the pentose phosphate pathway, purine metabolism, and energy production pathways. These novel insights suggest potential mechanisms underlying IUGR-associated intestinal dysfunction and impaired growth.

13.
ACS Nano ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150010

RESUMO

Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.

14.
Front Mol Biosci ; 11: 1338497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050734

RESUMO

Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.

15.
Cell Rep ; 43(8): 114552, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068660

RESUMO

The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic and therefore reliant on serine uptake. Importantly, despite several transporters being known to be capable of transporting serine, the transporters that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (SLC1A5) as a major contributor to serine uptake in cancer cells. ASCT2 is well known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that estrogen receptor α (ERα) promotes serine uptake by directly activating SLC1A5 transcription. Collectively, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target.

16.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000020

RESUMO

Solid tumors as well as leukemias and lymphomas show striking changes in nuclear structure including nuclear size and shape, the number and size of nucleoli, and chromatin texture. These alterations have been used in cancer diagnosis and might be related to the altered functional properties of cancer cells. The nuclear matrix (NM) represents the structural composition of the nucleus and consists of nuclear lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. In the nuclear microenvironment, the NM is associated with multi-protein complexes, such as basal transcription factors, signaling proteins, histone-modifying factors, and chromatin remodeling machinery directly or indirectly through scaffolding proteins. Therefore, alterations in the composition of NM could result in altered DNA topology and changes in the interaction of various genes, which could then participate in a cascade of the cancer process. Using an androgen-sensitive prostate cancer cell line, LNCaP, and its androgen-independent derivative, LN96, conventional 2D-proteomic analysis of the NM proteins revealed that purine-rich element binding protein alpha (PURα) was detected in the NM proteins and differentially expressed between the cell lines. In this article, we will review the potential role of the molecule in prostate cancer.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Progressão da Doença , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Matriz Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética
17.
Curr Drug Metab ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39005121

RESUMO

BACKGROUND: The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS: This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS: Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION: In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.

18.
Acta Histochem Cytochem ; 57(3): 89-100, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38988694

RESUMO

Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.

19.
Acta Physiol (Oxf) ; 240(9): e14209, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072954

RESUMO

AIM: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.


Assuntos
Proteína Desacopladora 1 , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos de Purina/metabolismo
20.
Dokl Biol Sci ; 517(1): 55-58, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955885

RESUMO

Carriers of herpes simplex virus type 1 (HSV-1) account for more than 90% of the global population. Infection manifests itself in the formation of blisters and ulcers on the face or genitals and can cause blindness, encephalitis, and generalized infection. All first- and second-line modern antiherpetic drugs selectively inhibit viral DNA polymerase. The purine-benzoxazine conjugate LAS-131 ((S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine), which we have described earlier, uses the large subunit of the HSV-1 terminase complex as a biotarget and selectively inhibits HSV-1 reproduction in vitro. Basically new results were for the first time obtained to characterize the combined effect on human herpesvirus infection for LAS-131 used in combination with practically significant antiviral compounds, including the nucleoside analogs acyclovir (ACV), penciclovir (PCV), ganciclovir (GCV), brivudine (BVdU), iododeoxyuridine (IdU), and adenine arabinoside (Ara-A); the nucleoside phosphonate analog cidofovir (CDV); and the pyrophosphate analog foscarnet (FOS). A cytopathic effect (CPE) inhibition assay showed that the drug concentration that inhibited the virus-induced CPE by 50% decreased by a factor of 2 (an additive effect, FOS) or more (a synergistic effect; ACV, PCV, GCV, IdU, BVdU, Ara-A, and CDV) when the drugs were used in combination with LAS-131. Nonpermissive conditions for HSV-1 reproduction were thus created at lower drug concentrations, opening up new real possibilities to control human herpesvirus infection.


Assuntos
Aciclovir , Antivirais , Endodesoxirribonucleases , Herpesvirus Humano 1 , Antivirais/farmacologia , Células Vero , Chlorocebus aethiops , Animais , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/antagonistas & inibidores , Aciclovir/farmacologia , Ganciclovir/farmacologia , Foscarnet/farmacologia , Guanina/análogos & derivados , Guanina/farmacologia , Cidofovir/farmacologia , Humanos , Bromodesoxiuridina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA