Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Cell Sci ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308343

RESUMO

Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNA (miRNA) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNA, the roles of other micro RNA-binding proteins (miRBPs) remain unclear in regulation of miRNA loading, dissociation from RISC, and extracellular release. In this study, we perform protein arrays to profile miRBPs and identify 118 RNA-binding proteins directly binding with miRNAs. Among those proteins, RBP quaking (QKI) inhibits extracellular release of mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as hnRNPD/AUF1 and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates the Toll-like Receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in mouse cortex. Thus, this study reveals contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.

2.
Cancer Lett ; 604: 217270, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306227

RESUMO

Alternative splicing (AS) plays a crucial role in the hallmarks of cancer and can open new avenues for targeted therapies. However, the aberrant AS events and the metastatic cascade in papillary thyroid carcinoma (PTC) remain largely unclear. Here, we identify the splicing factor, quaking protein (QKI), which was significantly downregulated in PTC and correlated with poor survival outcomes in patients with PTC. Functional studies indicated that low expression of QKI promoted the PTC cell growth and metastasis in vitro and in vivo. Mechanistically, low QKI induced exon 14 retention of extended synaptotagmin 2 (E-Syt2) and produced a long isoform transcript (termed E-Syt2L) that acted as an important oncogenic factor of PTC metastasis. Notably, overexpression of long non-coding RNA eosinophil granule ontogeny transcript (EGOT) physically binds to QKI and suppressed its activity by inhibiting ubiquitin specific peptidase 25 (USP25) mediated deubiquitination and subsequent degradation of QKI. Collectively, these data demonstrate the novel mechanistic links between the splicing factor QKI and splicing event in PTC metastasis and support the potential utility of targeting splicing events as a therapeutic strategy for PTC.

3.
Neurol Sci ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098857

RESUMO

PURPOSE: Angiocentric glioma (AG), a benign tumor identified within the last two decades, was officially included in the 2007 WHO Classification of Tumors of the Central Nervous System, WHO grade I. The tumor is relatively rare, with only approximately 100 cases reported. We aim to complement the characteristics and long-term prognosis of AG, as well as to detect MYB-QKI fusions. METHODS: The characteristics of all cases collected between 1 March 2009 and 1 March 2023 at the Beijing Sanbo Brain Hospital, Capital Medical University, were summarized and analyzed. Additionally, all fourteen patients were tested for MYB-QKI fusions. RESULTS: AG more predominantly occurs in adolescents (median age 16.5-year-old), and commonly presents with drug-resistant epilepsy. AG is frequently localized in the supratentorial regions and only one patient is in the brainstem. Brain parenchyma atrophy, and stalk-like signs can observe in imaging. Pathologically, tumor cells are perivascular pseudorosettes, presenting immunoreactivity for GFAP, S-100, Vimentin, "dot-like" staining for EMA, and low proliferative activity. Focal cortex dysplasia was observed in four patients. Twelve of fourteen (85.7%) patients were found with MYB-QKI fusions. Completely surgical resection typically has a satisfactory prognosis with long-term follow-up. CONCLUSION: AG is a rare benign tumor with a favorable prognosis after complete resection, characterized by refractory epilepsy, frequently occurring in adolescents. MYB-QKI fusions were detected in most AG patients, as a good defining genetic alteration pathologically. The potential presence of focal cortical dysplasia (FCD) may affect the prognosis of epilepsy.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119802, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069227

RESUMO

RATIONALE: Very-low-density lipoprotein receptor (VLDLR) involves in ocular neovascularization, a major cause of severe vision loss. However, the underlying molecular mechanisms were not completely clarified. Here, we aimed to investigate roles of circular RNAs (circRNAs) in VLDLR-associated ocular neovascularization. METHODS: Vldlr knockout (Vldlr-/-, ko), Robo4 knockout (Robo4-/-, ko) and wild-type (WT) mice were used. Mouse model of oxygen induced retinopathy (OIR) and high-throughput sequence were performed to profile the differential expression of circRNA and transcripts. RNase R treatment, Sanger PCR sequencing and quantitative polymerase chain reaction (qPCR) were used to validate candidate circRNAs and their expression patterns. Choroidal sprouting assay ex vivo and laser induction choroid neovascularization were used to determine the expression and functions of QKI/CircSlc17a5 on choroidal neovascularization. RESULTS: In macrophage and ocular tissues derived from Vldlr (Vldlr-/-,Vldlr ko) or Robo4 (Robo4-/-,Robo4 ko) deficiency as well as wild-type (WT) mice, Quaking (Qki) expression was significantly down-regulated in Vldlr deficiency compared to WT and Robo4 deficiency groups. Ectopic VLDLR expression or Reelin stimulation increased expression of QKI in bEnd.3 cells. Circular RNA sequencing uncovered that VLDLR regulated the biogenesis of certain circular RNAs, including the circSlc17a5. The number of Circular RNAs increased in mice treated with OIR. QKI mediated the biogenesis of circSlc17a5, which was an important regulator of choroidal angiogenesis. CONCLUSION: CircSlc17a5 regulated by VLDLR/QKI plays important roles in the choroidal angiogenesis.


Assuntos
Neovascularização de Coroide , Camundongos Knockout , RNA Circular , Receptores de LDL , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Reelina , Transdução de Sinais , Camundongos Endogâmicos C57BL , Corioide/metabolismo , Corioide/irrigação sanguínea , Modelos Animais de Doenças , Angiogênese
5.
J Biol Chem ; 300(8): 107595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032650

RESUMO

The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA-binding protein quaking (QKI), which binds to the proximal QKI recognition elements. Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affects pathological pathways of glioma, represented by migration.


Assuntos
Movimento Celular , Glioma , RNA Longo não Codificante , Proteínas de Ligação a RNA , Transcriptoma , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Glioma/metabolismo , Glioma/genética , Glioma/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Poliadenilação
6.
In Vivo ; 38(4): 2064-2073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936929

RESUMO

BACKGROUND/AIM: The RNA binding protein quaking (QKI) is associated with the development and progression of tumor suppressors in various cancers. However, the clinical implications of QKI expression have not yet been fully elucidated. In this study, we aimed to investigate the clinicopathological and prognostic significance of QKI expression in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We performed QKI, Zinc finger E-box-binding homeobox 1 (ZEB1), E-cadherin, and glutathione peroxidase 4 (GPX4) immunohistochemical staining on 166 HCC patient tissue samples. X-tile bioinformatics software was used to set the cut-off value for high QKI expression. Correlations between QKI expression and various clinicopathological parameters were assessed. RESULTS: The best cut-off value for high QKI expression was 12.5. High QKI expression was observed in 28 of 166 patients (16.9%) and was an independent prognostic factor for inferior recurrence-free survival (RFS). In addition, high ZEB1 and GPX4 expression correlated with high QKI expression, but not with the loss of E-cadherin expression. CONCLUSION: High QKI expression was identified in HCCs and associated with poor RFS. QKI might be a prognostic biomarker of HCCs associated with epithelial-to-mesenchymal transition and a potential candidate therapeutic target.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Caderinas/metabolismo , Caderinas/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Imuno-Histoquímica , Transição Epitelial-Mesenquimal/genética
7.
Cancer Control ; 31: 10732748241257142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769028

RESUMO

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , RNA Circular/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/genética , Linhagem Celular Tumoral , Feminino , Camundongos , Animais , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Discov Oncol ; 15(1): 182, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782769

RESUMO

BACKGROUND: The lncRNA growth arrest-specific 5 (GAS5) is involved in regulating breast cancer progression. In this study, we aimed to elucidate the function and mechanism of GAS5 in breast cancer. METHODS: The expressions of GAS5, fat mass and obesity-associated protein (FTO), insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and Quaking (QKI) were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. The m6A modification level of GAS5 was detected using m6A immunoprecipitation assay (MeRIP). The interaction between IGF2BP2 and GAS5 or QKI was detected using RNA immunoprecipitation assay (RIP) and dual luciferase reporter assay. Cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) assay. The biological functions of the FTO/GAS5/IGF2BP2/QKI axis was assessed using the tumor xenograft assay. RESULTS: LncRNA GAS5 expression decreased in breast cancer and was regulated by FTO-mediated m6A modification in an IGF2BP2-dependent manner, resulting in decreased GAS5 stability and expression. GAS5 recruited IGF2BP2 to target QKI and upregulated QKI expression in breast cancer cells. GAS5 suppressed breast cancer growth via IGF2BP2/QKI, and this inhibitory effect was modulated by FTO both in vitro and in vivo. CONCLUSIONS: GAS5 regulated by FTO-mediated m6A modification represses the growth of breast cancer via the IGF2BP2/QKI pathway, suggesting that the FTO/GAS5/IGF2BP2/QKI pathway can be a potential target for breast cancer treatment.

9.
Int Immunopharmacol ; 136: 112297, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38810307

RESUMO

BACKGROUND: RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS: Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS: The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS: Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Masculino , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
10.
Am J Cancer Res ; 14(2): 854-868, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455397

RESUMO

The poor outcome of patients with lung adenocarcinoma (LUAD) highlights the importance to identify novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUAD. Here, we aimed to investigate the role of ENTPD3-AS1 (ENTPD3 Antisense RNA 1) in LUAD and to explore its potential mechanisms by performing comprehensive bioinformatic analyses. The regulatory effect of ENTPD3-AS1 on the expression of NR3C1 was validated by siRNA-based silencing. The effect of miR-421 on the modulation of NR3C1 was determined by miRNA mimics and inhibitors transfection. ENTPD3-AS1 was expressed at lower levels in tumor parts and negatively correlated with unfavorable prognosis in LUAD patients. It exerted functions as a tumor suppressor gene by competitively binding to oncomir, miR-421, thereby attenuating NR3C1 expression. Transfection of lung cancer A549 cells with miR-421 mimics decreased the expression of NR3C1. Transfection of lung cancer A549 cells with miR-421 inhibitors increased the expression of NR3C1 with lower cellular functions as proliferation and migration via epithelial-mesenchymal transition. In addition, inhibition of ENTPD3-AS1 by siRNA transfection decreased the levels of NR3C1, supporting the ENTPD3-AS1/miR-421/NR3C1 cascade. Moreover, the bioinformatic analysis also showed that ENTPD3-AS1 could interact with the RNA-binding proteins (RBPs), CELF2 and QKI, consequently regulating RNA expression and processing. Taken together, we identified that ENTPD3-AS1 and its indirect target NR3C1 can act as novel biomarkers for determining the prognosis of patients with LUAD, and further study is required.

11.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38372062

RESUMO

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células HeLa , Inativação Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Mensageiro/genética
12.
J Cell Mol Med ; 28(2): e18068, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041531

RESUMO

The role of lncRNAs in the pathogenesis of cancer, including colorectal cancer (CRC), has repeatedly been demonstrated. However, very few lncRNAs have been well annotated functionally. Our study identified a novel lncRNA upregulated in CRC, NONHSAT136151, which was correlated with clinical progression. In functional assays, NONHSAT136151 significantly enhanced CRC cell proliferation, migration and invasion. Mechanistically, NONHSAT136151 interacted with RNA-binding protein (RBP) QKI (Quaking) to interfere with QKI binding to target mRNAs and regulate their expression. As well, FOXP3 may be causally related to the dysregulation of NONHSAT136151 in CRC cells through its transcriptional activity. In conclusion, our findings identified a novel lncRNA regulated by FOXP3 participates in CRC progression through interacting with QKI, indicating a novel lncRNA-RBP interaction mechanism is involved in CRC pathogenesis.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , MicroRNAs/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Mol Cancer ; 22(1): 195, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044421

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. METHODS: RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. RESULTS: We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. CONCLUSIONS: Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , Gencitabina , RNA Circular/genética , RNA Circular/metabolismo , Precursores de RNA , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Dano ao DNA , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Fator 3-alfa Nuclear de Hepatócito/genética
14.
Cell Cycle ; 22(21-22): 2449-2466, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38146686

RESUMO

Neonatal respiratory distress syndrome (NRDS) is a common complication of gestational diabetes mellitus (GDM) and late preterm births. Research suggests that SIRT1 was involved in LPS-induced acute respiratory distress syndrome, but its mechanism remains to be further explored. Here, pregnant rats were intraperitoneally injected with 45 mg/Kg streptozotocin at day 0 of gestation to induce GDM and injected with LPS at day 17 of gestation to induce late preterm birth. Pioglitazone (a PPARγ agonist) was administered from day 17 to parturition in GDM group, and it was administered for 3 days before LPS injection in late preterm birth group. SRT1720 (a SIRT1 activator) was administered by oral gavage from day 0 to day 17 in both groups. Our data showed that activation of SIRT1 or PPARγ alleviated the abnormal blood glucose metabolism and lung tissue injury, downregulated expression of surfactant proteins (SP-B and SP-C), and decreased activation of the PI3K/AKT pathway induced by GDM and late preterm birth in neonatal rats. Moreover, an insulin resistance model was established by treating primary AT-II cells with insulin. Activation of SIRT1 reversed insulin-induced reduction in cell proliferation, glucose consumption, SP-B and SP-C expression, and the activity of the PI3K/AKT pathway and increase in cellular inflammation and apoptosis. Mechanistically, SIRT1 upregulated PPARγ expression via deacetylation of QKI5, an RNA binding protein that can stabilize its target mRNA molecules, and then activated the PI3K/AKT pathway. In conclusion, SIRT1 promotes the expression of PPARγ via upregulation of QKI5 and activates the PI3K/AKT pathway, thus mitigating NRDS caused by GDM and late preterm birth.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Nascimento Prematuro , Síndrome do Desconforto Respiratório , Animais , Feminino , Gravidez , Ratos , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Insulina , Resistência à Insulina/genética , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
15.
Arch Med Res ; 54(5): 102853, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37460362

RESUMO

BACKGROUND: Dysregulation of MSCs differentiation is associated with many pathophysiological processes. Genetically modified MSCs transplantation helps restore bone loss efficiently. METHODS: BMSCs-specific QKI overexpressing and knockdown mice were built to explore QKI's role in bone formation and fat accumulation. Primary BMSCs with QKI overexpression and knockout were subjected to osteogenic and adipogenic differentiation. ALP staining and oil red O staining were performed to evaluate the differences between the groups. RNA immunoprecipitation was performed to identify the QKI-related pathway. QKI deficient BMSCs were transplanted into mice with glucocorticoid-induced osteoporosis to evaluate its therapeutic potential. RESULTS: Mice harboring BMSC-specific transgenic QKI exhibited reduced bone mass, while BMSC-specific QKI-deficient mice showed an increase in bone mass. Osteogenic differentiation of QKI deficient BMSCs was promoted and adipogenic differentiation was inhibited, while QKI overexpression in BMSCs displayed the opposite effects. To define the underlying mechanisms, RIP sequencing was performed. Wnt pathway-related genes were the putative direct target mRNAs of QKI, Canonical Wnt pathway activation was involved in QKI's effects on osteogenic differentiation. RNA immunoprecipitation quantitative real-time Polymerase Chain Reaction (PCR) and RNA fluorescence in situ hybridization experiments further validated that QKI repressed the expressions of Wnt5b, Fzd7, Dvl3 and ß-catenin via direct binding to their putative mRNA specific sites. Glucocorticoid-induced osteoporotic mice transplanted with QKI deficient BMSCs exhibited less bone loss compared with mice transplanted with control BMSCs. CONCLUSIONS: QKI suppressed BMSCs osteogenic differentiation by downregulating the expressions of Wnt5b, Fzd7, Dvl3 and ß-catenin. Loss of QKI in BMSCs transplantation may provide a new strategy for the treatment of orthopedic diseases such as osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Camundongos , Animais , Osteogênese/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo , Glucocorticoides , Hibridização in Situ Fluorescente , Osteoporose/genética , Osteoporose/terapia , Osteoporose/metabolismo , RNA/metabolismo , RNA/farmacologia , Células Cultivadas , Diferenciação Celular
16.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379838

RESUMO

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , Grânulos de Estresse , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos/metabolismo
17.
Pathol Oncol Res ; 29: 1611231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362245

RESUMO

Introduction: Angiocentric gliomas (AG) in brainstem location are exceedingly rare and might cause differential diagnostic problems and uncertainty regarding the best therapeutic approach. Hereby, we describe the clinicopathological findings in a brainstem AG presenting in a toddler child and review the literature. Case report: A 2-year-old boy presented with 5 weeks history of gait disturbances, frequent falls, left-sided torticollis and swallowing problems. MRI head showed a T2-hyperintense, partly exophytic mass lesion centred in the pontomedullary region, raising the possibility of diffuse midline glioma. The exophytic component was partially resected by suboccipital craniotomy, leaving intact the infiltrative component. Ventriculoperitoneal shunt was implanted due to postoperative hydrocephalus. Histological examination revealed a moderately cellular tumour consisted of bland glial cells infiltrating the brain parenchyma and radially arranged around the blood vessels. By immunohistochemistry, the tumour strongly expressed S100 and GFAP in addition to intense nestin positivity, while OLIG2 was negative in the perivascular tumour cells. DNA methylation array profiled the tumour as "methylation class diffuse astrocytoma, MYB or MYBL1-altered subtype B (infratentorial)" and an in-frame MYB::QKI fusion was identified by RNA sequencing, confirming the diagnosis of angiocentric glioma. The patient has been initially treated with angiogenesis inhibitor and mTOR inhibitor, and now he is receiving palliative vinblastine. He is clinically stable on 9 months follow-up. Conclusion: Brainstem AG may cause a diagnostic problem, and the surgical and oncological management is challenging due to unresectability and lack of response to conventional chemo-radiation. In the future, genetically-tailored therapies might improve the prognosis.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Masculino , Humanos , Pré-Escolar , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrocitoma/patologia , Tronco Encefálico/patologia
18.
Aging (Albany NY) ; 15(9): 3791-3806, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37171386

RESUMO

Esophageal cancer (EC) is considered one of the most lethal cancers in human beings, and multiple miRNAs have been investigated to be involved in EC development by targeting their target genes. However, the function and related mechanism of miRNA-497 on EC tumorigenesis remain uncertain. This study first demonstrated that the expression levels of miR-497 in esophageal cancer specimens and cells were down-regulated. Forced expression of miR-497 inhibited cell proliferation, tube formation and migration in EC cells. To further investigate the potential molecular mechanism of miR-497 suppression in regulating EC, we found that miR-497 directly binds to the 3'-untranslational region of QKI, miR-497 overexpression suppressed QKI expression. We further found that overexpression of miR-497 enhanced the effect of chemotherapy in EC cell lines, and prevented the tumor growth of EC in vivo. Our findings indicated that miR-497 suppression increased QKI expression and therapeutic resistance of esophageal cancer, which is likely to be a biomarker of EC progression and potential therapeutic target.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
19.
Am J Respir Cell Mol Biol ; 69(2): 159-171, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146099

RESUMO

Pulmonary hypertension (PH) is a devastating disease characterized by progressive increases in pulmonary vascular resistance and remodeling, which eventually leads to right ventricular failure and death. The aim of this study was to identify novel molecular mechanisms involved in the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. In this study, we first demonstrated that the mRNA and protein expression amounts of QKI (Quaking), an RNA-binding protein, were elevated in human and rodent PH lung and pulmonary artery tissues and hypoxic human PASMCs. QKI deficiency attenuated PASMC proliferation in vitro and vascular remodeling in vivo. Next, we elucidated that QKI increases STAT3 (signal transducer and activator of transcription 3) mRNA stability by binding to its 3' untranslated region. QKI inhibition reduced STAT3 expression and alleviated PASMC proliferation in vitro. Moreover, we also observed that the upregulated expression of STAT3 promoted PASMC proliferation in vitro and in vivo. In addition, as a transcription factor, STAT3 bound to microRNA (miR)-146b promoter to enhance its expression. We further showed that miR-146b promoted the proliferation of smooth muscle cells by inhibiting STAT1 and TET2 (Tet methylcytosine dioxygenase 2) during pulmonary vascular remodeling. This study has demonstrated new mechanistic insights into hypoxic reprogramming that arouses vascular remodeling, thus providing proof of concept for targeting vascular remodeling by directly modulating the QKI-STAT3-miR-146b pathway in PH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Humanos , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Remodelação Vascular/genética
20.
Childs Nerv Syst ; 39(9): 2509-2513, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165121

RESUMO

Pontine gliomas represent difficult to treat entity due to the location and heterogeneous biology varying from indolent low-grade gliomas to aggressive diffuse intrinsic pontine glioma (DIPG). Making the correct tumor diagnosis in the pontine location is thus critical. Here, we report a case study of a 14-month-old patient initially diagnosed as histone H3 wild-type DIPG. Due to the low age of the patient, the MRI appearance of DIPG, and anaplastic astrocytoma histology, intensive chemotherapy based on the HIT-SKK protocol with vinblastine maintenance chemotherapy was administered. Rapid clinical improvement and radiological regression of the tumor were observed with nearly complete remission with durable effect and excellent clinical condition more than 6.5 years after diagnosis. Based on this unexpected therapeutic outcome, genome-wide DNA methylation array was employed and the sample was classified into the methylation class "Low-grade glioma, MYB(L1) altered." Additionally, RT-PCR revealed the presence of MYB::QKI fusion. Taken together, the histopathological classification, molecular-genetic and epigenetic features, clinical behavior, and pontine location have led us to reclassify the tumor as a pontine MYB-altered glioma. Our case demonstrates that more intensive chemotherapy can achieve long-term clinical effect in the treatment of MYB-altered pontine gliomas compared to previously used LGG-based regimens or radiotherapy. It also emphasizes the importance of a biopsy and a thorough molecular investigation of pontine lesions.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma , Humanos , Lactente , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Astrocitoma/diagnóstico por imagem , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/genética , Histonas/genética , Ponte/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA