Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822559

RESUMO

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Assuntos
Secas , Ecossistema , Ciclo do Nitrogênio , Isótopos de Nitrogênio , Solo , Solo/química , Isótopos de Nitrogênio/análise , China , Nitrogênio/análise , Nitrogênio/metabolismo , Clima Desértico
2.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930503

RESUMO

The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.

3.
Sci Total Environ ; 943: 173814, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848915

RESUMO

The mattic layer is a main ecological function bearer of alpine meadow soils in the Qinghai-Tibet Plateau. It has high soil organic carbon (SOC) content with a variety of SOC fractions, which are thought to have different sensitivities to climate change. The effects of soil properties and climate on the SOC fractions in the mattic layer are not well understood. To address this, we analyzed the effects of environmental factors on two SOC fractions: particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). A random forest model (RFM), partial correlation analysis, and structural equation model (SEM) were used to quantify the relative effects of soil and climatic factors on SOC fractions. We found that SOC and its fractions are primarily regulated by soil properties rather than climate. Partial correlation analysis and SEM revealed that climate indirectly affects SOC by influencing soil properties. Silt+Clay and exchangeable calcium (Caex) were found to be the strongest contributing factors of MAOC and POC, respectively. A distinct shift occurs in the mechanism underlying SOC stabilization with varying soil pH. In acidic and neutral environments, amorphous Al/Fe-(hydr) oxides contribute to the stability of MAOC, whereas free Al/Fe-(hydr) oxides promote SOC mineralization. Conversely, Caex positively influences the stabilization of both POC and MAOC throughout the pH range. These results can be extrapolated to predict SOC dynamics in future soil conditions affected by environmental change, especially for use in Earth system models.

4.
Front Plant Sci ; 15: 1366512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606068

RESUMO

Introduction: Seed traits related to recruitment directly affect plant fitness and persistence. Understanding the key patterns and influencing factors of seed trait variations is conducive to assessing plant colonization and habitat selection. However, the variation patterns of the critical seed traits of shrub species are usually underrepresented and disregarded despite their vital role in alpine desert ecosystems. Methods: This study gathered seeds from 21 Asterothamnus centraliasiaticus populations across the Qinghai-Tibetan Plateau, analyzing geographical patterns of seed traits to identify external environmental influences. Additionally, it explored how seed morphology and nutrients affect germination stress tolerance, elucidating direct and indirect factors shaping seed trait variations. Results: The results present substantial intraspecific variations in the seed traits of A. centraliasiaticus. Seed traits except seed length-to-width ratio (LWR) all vary significantly with geographic gradients. In addition, the direct and indirect effects of climatic variables and soil nutrients on seed traits were verified in this study. Climate mainly influences seed nutrients, and soil nutrients significantly affect seed morphology and seed nutrients. Furthermore, climate directly impacts seed germination drought tolerance index (GDTI) and germination saline-alkali tolerance index (GSTI). Seed germination cold tolerance index (GCTI) is influenced by climate and soil nutrients (mostly SOC). GDTI and GSTI are prominently influenced by seed morphology (largely the seed thousand-grain weight (TGW)), and GCTI is evidently affected by seed nutrients (mainly the content of soluble protein (CSP)). Discussion: The findings of this study amply explain seed trait variation patterns of shrubs in alpine desert ecosystems, possessing significant importance for understanding the mechanism of shrub adaptation to alpine desert ecosystems, predicting the outcomes of environmental change, and informing conservation efforts. This study can be a valuable reference for managing alpine desert ecosystems on the Qinghai-Tibetan Plateau.

5.
J Fish Biol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650364

RESUMO

The Yarlung Zangbo River is a river with abundant hydropower resources but fragile biodiversity in China. As an important benchmark for both research and ecological management, there is still a lack of knowledge about the swimming ability of fishes in the Yarlung Zangbo River. The induced flow velocity (Uind), critical swimming speed (Ucrit), and burst swimming speed (Uburst) of five Schizothoracinae species were tested in this study. Relative swimming ability related to body length and body shape was calculated. The results indicated that the average absolute swimming speeds (Uind-a, Ucrit-a, and Uburst-a) of all the experimental fish were 10.20 ± 0.01, 57.58 ± 3.28, and 69.54 ± 2.94 cm/s, respectively, and the corresponding relative Uind, Ucrit, and Uburst related to body length (Uind-l, Ucrit-l, Uburst-l) were 1.15 ± 0.07, 5.04 ± 0.26, and 7.23 ± 0.28 BL/s, respectively. Moreover, relative Uind, Ucrit, and Uburst related to body shape (Uind-s, Ucrit-s, and Uburst-s) were 0.80 ± 0.13, 2.49 ± 0.51, and 4.32 ± 0.57 cm-2/s, respectively. No significantly differences in relative swimming speeds existed among five species. Only Oxygymnocypris stewartii was significantly weaker in Uburst-s than Schizothorax o'connori. The body shape showed a stronger relationship with swimming speed than the body length did. Schizothoracinae fish in the Yarlung Zangbo River basin are less sensitive to the water flow and performed weaker Ucrit and Uburst compared to those in the Yangtze River basin, indicating that Schizothoracinae fish in the Yarlung Zangbo River may be more susceptible to threats from environmental changes. The paper enriched the research on the swimming ability of Schizothoracinae fishes and provided efficient data for the fish conservation in the Yarlung Zangbo River.

6.
Environ Int ; 185: 108516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447452

RESUMO

Climate change is endangering the soil carbon stock of alpine grasslands on the Qinghai-Tibetan Plateau (QTP), but the limited comprehension regarding the mechanisms that sustain carbon storage under hydrothermal changes increases the uncertainty associated with this finding. Here, we examined the relative abundance of soil microbial keystone taxa and their functional potentials, as well as their influence on soil carbon storage with increased precipitation across alpine grasslands on the QTP, China. The findings indicate that alterations in precipitation significantly decreased the relative abundance of the carbon degradation potentials of keystone taxa, such as chemoheterotrophs. The inclusion of keystone taxa and their internal functional potentials in the two best alternative models explained 70% and 63% of the variance in soil organic carbon (SOC) density, respectively. Moreover, we found that changes in chemoheterotrophs had negative effects on SOC density as indicated by a structural equation model, suggesting that some specialized functional potentials of keystone taxa are not conducive to the accumulation of carbon sink. Our study offers valuable insights into the intricate correlation between precipitation-induced alterations in soil microbial keystone taxa and SOC storage, highlighting a rough categorization is difficult to distinguish the hidden threats and the importance of incorporating functional potentials in SOC storage prediction models in response to changing climate.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Pradaria , Mudança Climática , China
7.
Food Chem ; 447: 138855, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520902

RESUMO

Yak meat is more popular among consumers because of its high nutritional value, but little attention has been paid to its meat quality, which is affected by different phenology periods grass. We hypothesized that seasonal variations in grass composition influenced the ruminal bacteria community, and eventually affected the meat quality of yaks. This study aims to investigate the relationship of meat quality in grazing yak as well as the key rumen bacteria using targeted and untargeted metabolomics and 16S rRNA during different phenology periods. The main three altered metabolic pathways in grazing yak, including amino acids biosynthesis, glutathione metabolism, and fatty acids biosynthesis, were found in the grass period (GP) group compared to the regreen period (RP) and hay period (HP) groups. The GP group had higher concentrations of flavor amino acids (FAA), polyunsaturated fatty acids (PUFA), and a lower ratio of n-6/n-3 compared with the RP group. Correlation analysis results showed that Rikenellaceae_RC9_gut_group was positively correlated with fatty acids and lipid metabolites, which might be involved in lipid metabolism. Pediococcus had a positive correlation with biological peptides, which could be involved in the metabolism of bioactive compounds. In conclusion, grass in different phenology periods was associated with modified amino acids and fatty acids composition of yak meat as well as altered regulation of biological pathways, which was correlated with changes in rumen bacterial communities.


Assuntos
Bactérias , Ácidos Graxos , Animais , Bovinos , Tibet , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Bactérias/metabolismo , Carne/análise , Aminoácidos/metabolismo
8.
Sci Total Environ ; 924: 171517, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461985

RESUMO

Shrubs have developed various mechanisms for soil phosphorus utilization. Shrub encroachment caused by climate warming alters organic phosphorus mineralization capability by promoting available phosphorus absorption and mediating root exudates. However, few studies have explored how warming regulates the effects of dominant shrubs on soil organic phosphorus mineralization capability. We provide insights into warming, dominant shrub removal, and their interactive effects on the soil organic phosphorus mineralization potential in the Qinghai-Tibetan Plateau. Real-time polymerase chain reaction was used to quantify the soil microbial phosphatase genes (phoC and phoD), which can characterize the soil organic phosphate mineralization potential. We found that warming had no significant effect on the soil organic phosphate-mineralized components (total phosphate, organic phosphate, and available phosphate), genes (phoC and phoD), or enzymes (acid and alkaline phosphatases). Shrub removal negatively influenced the organic phosphate-mineralized components and genes. It significantly decreased soil organic phosphate mineralization gene copy numbers only under warming conditions. Warming increased fungal richness and buffered the effects of shrub removal on bacterial richness and gene copy numbers. However, the change in the microbial community was not the main factor affecting organic phosphate mineralization. We found only phoC copy number had significant correlation to AP. Structural equation modelling revealed that shrub removal and the interaction between warming and shrub removal had a negative direct effect on phoC copy numbers. We concluded that warming increases the negative effect of shrub removal on phosphorus mineralization potential, providing a theoretical basis for shrub encroachment on soil phosphate mineralization under warming conditions.


Assuntos
Bactérias , Fósforo , Fósforo/análise , Solo/química , Fosfatos/análise , Organofosfatos , Microbiologia do Solo
9.
Sci Total Environ ; 926: 171857, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521264

RESUMO

In aquatic ecosystems, dissolved organic matter (DOM) plays a vital role in microbial communities and the biogeochemical cycling of elements. However, little is known about the associations between DOM and microbial communities in lake sediments. This study investigated the composition of water-extractable organic matter and microbial communities in surface sediments of lakes with different salinities on the Qinghai-Tibet Plateau. Ultrahigh-resolution mass spectrometry and high-throughput microbial sequencing techniques were employed to assess the associations between molecular diversity and microbial diversity and the effects of salinity in 19 lakes spanning a salinity range from 0.22 ‰ to 341.87 ‰. Our results show that increasing salinity of lake water led to higher molecular diversity of DOM in surface sediments. High-salinity lakes exhibited distinct DOM characteristics, such as lower aromaticity, smaller molecular weight, and higher oxidation degree, compared to freshwater lakes. The complexity of the microbial network composition of sediments first increased and then decreased with the increase of salinity. Moreover, as salinity increases, the dominant species transitioned from Gammaproteobacteria to Bacteroidia, and this transition was accompanied by a decrease in microbial diversity and an increase in molecular diversity. Microbial factors accounted for 34.68 % of the variation in the molecular composition of DOM. Overall, this study emphasizes the significant effects of salinity on both molecular and microbial diversity in lake sediments. Furthermore, our findings underscore the importance of microbes in controlling the range of organic compounds present in lakes and deepen our knowledge of the biogeochemical cycling of DOM.


Assuntos
Lagos , Microbiota , Lagos/química , Tibet , Matéria Orgânica Dissolvida , Salinidade , Água
10.
Sci Total Environ ; 918: 170607, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336057

RESUMO

Plant overcompensatory growth (OCG) is an important mechanism by which plant communities adapt to environmental disturbance. However, it is not clear whether plant OCG can occur in degraded alpine meadows. Here, we conducted a mowing experiment in an alpine meadow at three degradation levels (i.e., severe degradation, SD; moderate degradation, MD; and light degradation, LD) on the southeastern Qinghai-Tibetan Plateau from 2018 to 2020 to investigate plant OCG and its relationships with soil available nutrients, plant nutrient use efficiency (i.e., nitrogen use efficiency, NUE; and phosphorus use efficiency, PUE), and precipitation. The results showed that 1) the OCG of the plant community generally occurred across all degradation levels, and the OCG strength of the plant community decreased with mowing duration. Moreover, the OCG strength of the plant community in the SD treatment was significantly greater than that in the MD and LD treatments after two years of mowing (p < 0.05). 2) In LD and MD, the soil nitrate nitrogen (NO3-) and available phosphorus (AP) concentrations exhibited a decreasing trend (p < 0.05), while the soil ammonium nitrogen (NH4+) concentration did not change from 2018 to 2020 (p > 0.05). In the SD treatment, the soil NO3- concentration tended to decrease (p < 0.05), the NH4+ concentration tended to increase (p < 0.05), and the AP concentration exhibited an inverse parabolic trend (p < 0.05) from 2018 to 2020. 3) From 2018 to 2020, plant NUE and PUE exhibited decreasing trends at all degradation levels. 4) Plant nutrient use efficiency, which is regulated by complex plant-soil interactions, strongly controlled the OCG of the plant community along each degradation gradient. Moreover, precipitation not only directly promoted the OCG of the plant community but also indirectly affected it by regulating the structure of the plant community and plant nutrient use efficiency. These results suggest that the OCG of the plant community in degraded alpine meadows may benefit not only from the strong self-regulating capacity of the plant-soil system but also from humid climatic conditions.


Assuntos
Pradaria , Plantas , Tibet , Plantas/metabolismo , Nitrogênio/análise , Solo/química , Fósforo/metabolismo
11.
J Environ Manage ; 351: 119887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169255

RESUMO

Comprehensive regional remote analysis tends to neglect lakes in exorheic basins on the Qinghai-Tibetan Plateau (QTP), and a concurrent lack of discussions on whether there exist imbalanced explanations for the driving forces of both internal and external lakes is also present. We integrate multisourced lake datasets, high-resolution information, and available altimetry datasets to establish multiple mathematical models to meta-simulate lake volume changes, extend current lake variation datasets, and quantify the imbalance of variations and factors driving the water mass budget. The results showed that the primary cause of lake variations in QTP is net precipitation (57.75 ± 31.46%), followed by glacier runoff (33.53 ± 31.42%), and permafrost (8.34 ± 7.87%). Even though glacier runoff is currently considered as a weak factor of lake variation, heterogeneous results call for remaining attention in glacier-induced lake basins. Imbalance embodying in lake variability but not in contributions of driving factors, which calls for special lake management ways in different watersheds.


Assuntos
Lagos , Modelos Teóricos , Tibet , Camada de Gelo
12.
PhytoKeys ; 237: 103-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292074

RESUMO

Hedysarumqilianshanensesp. nov. (Fabaceae, Hedysareae) is described and illustrated from the Qilianshan Mountains in Gansu, China. This new species is similar to H.przewalskii, but can be distinguished by its corolla being light purple to purple, standard 15-19 mm long, wings 14-16 mm long, keels 16-19 mm long, and the ovary and legume being glabrous. The new species can be easily distinguished from H.neglectum Ledeb. by its bract being shorter than the pedicel, and the ovary and legume being glabrous. Phylogenetic tree based on the nuclear ITS and ETS sequences shows that H.qilianshanense is sister to H.przewalskii, while the tree based on the plastid psbA-trnH, trnC-petN, trnL-F, trnS-G and petN-psbM sequences shows H.qilianshanense as sister to a clade consisting of H.hedysaroides, H.inundatum, H.americanum and H.neglectum. The new species is a diploid with the chromosome number 2n = 14. Based on morphological, phylogenetic and karyotypic evidence, the new species may originate from an ancient homoploid hybrid speciation event.

13.
Pathogens ; 13(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276159

RESUMO

The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.

14.
Sci Total Environ ; 917: 170438, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286283

RESUMO

Uncertainty in methane (CH4) exchanges across wetlands and grasslands in the Qinghai-Tibetan Plateau (QTP) is projected to increase due to continuous permafrost degradation and asymmetrical seasonal warming. Temperature plays a vital role in regulating CH4 exchange, yet the seasonal patterns of temperature dependencies for CH4 fluxes over the wetlands and grasslands on the QTP remain poorly understood. Here, we demonstrated a stronger warming response of CH4 exchanges during the non-growing season compared to the growing season on the QTP. Analyzing 9745 daily observations and employing four methods -regression fitting of temperature-CH4 flux, temperature dependence calculations, field-based and model-based control experiments-we found that warming intensified CH4 emissions in wetlands and uptakes in grasslands. Specifically, the average reaction intensity in the non-growing season surpasses that in the growing season by 1.89 and 4.80 times, respectively. This stronger warming response of CH4 exchanges during the non-growing season significantly increases the regional CH4 exchange on the QTP. Our research reveals that CH4 exchanges in the QTP have a higher warming sensitivity in non-growing seasons, which meanwhile are dominated by a larger warming rate than the annual average. The combined effects of these two factors will significantly alter the CH4 source/sink on the QTP. Neglecting these impacts would lead to inaccurate estimations of CH4 source/sink over the QTP under climate warming.

15.
Zoonoses Public Health ; 71(1): 120-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817386

RESUMO

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. In 2018-2022, we investigated the presence of HEV RNA in 1233 stool samples collected in the Qinghai-Tibetan Plateau, including humans (16), Tibetan pigs (624), yaks (312), sheep (267), and dogs (14). HEV RNA was only detected in Tibetan pig faecal samples (18.27%, 114/624). To perform molecular characterization of HEV strains in Tibetan pigs, we obtained 21 complete HEV genome sequences between 2018 and 2022. Sequence comparisons showed that 21 HEV strains from Tibetan pigs shared the mean nucleotide identities with the reference HEV strains ranging between 82.9% and 94.9% and 89.3% and 92.1% similarities with human HEV strains. Phylogenetic analysis confirmed that all HEV strains were genotype 4, closely related to human HEV strains. Sequence recombinant analysis showed five potential recombinant strains identified in this study, of which SWU/D18/2018 (GenBank No. MK410044) was recombinant with human and swine HEV strains, located 6509-6878 nt from the recombination point. Based on the Bayesian evolutionary trees, we found that most HEV strains diverged later than human HEV (16 Tibetan pig HEV strains diverged later than 1979, and seven human HEV strains diverged earlier than 1979). Therefore, we speculated that the prevalence of HEV 4 in Tibetan pigs possibly originated from humans in the Qinghai-Tibetan Plateau.


Assuntos
Doenças do Cão , Vírus da Hepatite E , Hepatite E , Doenças dos Ovinos , Doenças dos Suínos , Suínos , Humanos , Animais , Ovinos , Cães , Vírus da Hepatite E/genética , Tibet/epidemiologia , Hepatite E/epidemiologia , Hepatite E/veterinária , Filogenia , Prevalência , Teorema de Bayes , Doenças dos Suínos/epidemiologia , China/epidemiologia , Genótipo , RNA Viral/genética
16.
Environ Res ; 245: 118012, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154564

RESUMO

The interactive effect of soil cooling and nitrogen (N) addition can accurately simulate climatic and anthropogenic effects on terrestrial and other land-based ecosystems, but direct empirical measurements on the effects of cooling and N addition on soil carbon (C) and N are lacking. Hence, transplanting soils into colder regions was used to evaluate the effects of cooling and N addition on soil C and N. We used PVCs of 30 cm in height and 8 cm in diameter to extract soil samples. Soil C and N were significantly (P < 0.05) increased by transplanting soils into colder regions. In contrast, cooling has insignificantly (P > 0.05) increased the soil dissolved organic C (DOC) and dissolved organic (DON), but the effect was negatively significant on soil pH compared to the C/N ratio. Similarly, N addition significantly increased the measured soil N stock. However, the effect was negatively significant on soil pH (P < 0.05) compared to the C/N ratio (P > 0.05). Nevertheless, the interaction of cooling and N addition did not affect the soil C and N storage. A similar effect was observed on the soil DOC and DON. The results presented here illustrate that transplanting soils into colder regions and N deposition has perfectly simulated the effects of climate-forcing factors on soil C and N storage in terrestrial and other land-based ecosystems. Accordingly, this study suggests that low temperatures have stimulated the accumulation of the measured soil organic and dissolved properties, but the effect is less consequential when low temperature interacts with N addition in high-elevation areas where ecosystem structures and functions are limited by temperature and may serve as a baseline for future research on land feedbacks to the climate system.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Florestas , Nitrogênio/análise
17.
J Environ Manage ; 351: 119850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141346

RESUMO

Alpine meadows constitute one of the major ecosystems on the Qinghai-Tibetan Plateau, with livestock grazing exerting a considerable impact on their biodiversity. However, the degree to which plant diversity influences community stability under different grazing intensities remains unclear in this region. This study conducted controlled grazing experiments across four levels of grazing intensity (no-, low-, medium-, and high-grazing) based on herbage utilization rate to assess the influence of grazing intensities on plant community structure and diversity-stability relationships. We discovered that high-grazing reduced plant diversity and attenuated the temporal stability and resistance of above-ground biomass. No- and low-grazing could alleviate plant biomass loss, with community resistance being optimal under low-grazing. The direct effects of livestock grazing on temporal stability were found to be negligible. Plant characteristics and diversity accounted for a substantial proportion of livestock grazing effects on community resistance (R2 = 0.46), as revealed by piecewise structural equation model analysis. The presence of plant diversity enhances the resistance of alpine meadows against disturbance and accelerates the recovery after grazing. Our results suggest that low-grazing intensity may represent a judicious option for preserving species diversity and community stability on the Qinghai-Tibetan Plateau.


Assuntos
Ecossistema , Gado , Animais , Pradaria , Biodiversidade , Biomassa , Plantas
18.
Parasitol Res ; 123(1): 43, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095728

RESUMO

Hypoderma bovis (H. bovis) and Hypoderma sinense (H. sinense) are insects that cause hypodermosis in yaks and Bos taurus. Hypodermosis is a severe skin condition that not only impairs the development of local animal husbandry but also poses threats to human health as a zoonosis. The Qinghai-Tibetan Plateau (QTP) is known as the "Roof of the World." Its unique geographical environment and climate conditions have supported the growth of a wide range of mammals, providing favorable conditions for Hypoderma spp. to complete their life cycles. In this study, the whole mitochondrial genomes of H. bovis and H. sinense collected from the QTP were sequenced and phylogenetically analyzed. We found that the whole genomes of H. bovis and H. sinense are 16,283 bp and 16,300 bp in length, respectively. Both the H. bovis and H. sinense genomes have 37 mitochondrial genes, which include two rRNA genes (16S rRNA and 12S rRNA), 22 tRNA genes, the control region (D-loop region), the light chain replication initiation region, and 13 protein-coding genes (PCGs). The phylogenetic tree generated based on the 13 PCGs revealed close phylogenetic relationships between H. sinense, H. bovis, and Hypoderma lineatum. A similar result was also found in our phylogenetic analysis based on 18S rRNA and 28S rRNA. However, analysis of cytochrome oxidase subunit I (COI) showed cluster of H. bovis, H. sinense, and Cuterebra spp. on the same branch, all belonging to Oestridae. The differentiation time generated based on 13 PCGs indicates that H. bovis and H. sinense differentiated and formed ~4.69 million years ago (Mya) and ~4.06 Mya, respectively. This timing coincides with the differentiation and appearance of yak and Bos taurus in the Pliocene (~4.7 Mya), indicating that the parasites and mammals diverged in close temporal proximity. Of note, this period also witnessed a rapid uplift of the QTP, causing significant climate and environmental changes. Thus, we conjecture that the differentiation of Hypoderma spp. is potentially related to the differentiation of their host species, as well as climate changes caused by the uplift of the QTP. Overall, our study can provide valuable data to support further studies on the phylogeny and differentiation of Hypoderma spp. on the QTP.


Assuntos
Dípteros , Animais , Bovinos , Humanos , Filogenia , RNA Ribossômico 16S , Tibet , Mitocôndrias/genética , Mamíferos
19.
Environ Sci Pollut Res Int ; 30(56): 118662-118676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917272

RESUMO

The changes in landscape ecological risk (LER) of the Qinghai-Tibet Plateau (QTP) profoundly affect the ecological environment of China and the world. We measured the evolution of the LER level and its driving factors through the past 40 years using meteorological data, population density information, and land use data acquired through remote sensing monitoring techniques spanning the years 1980 to 2020. Several key findings were derived: (1) The overall LER of the QTP was at a medium level during 1980-2020, with a fluctuating but decreasing overall trend. (2) Between 1980 and 2020, the spatial distribution of LER in the QTP was high in the west and low in the east; the LER level of the six provinces (districts) showed an overall decrease. (3) During 2000-2020, the LER of the QTP was influenced by a complex mechanism of action. The interactions between different influencing factors were mainly non-linear reinforcement and two-factor reinforcement, and factor interaction significantly enhanced the effect on LER. The findings are of significance for the prevention, control, and management of LER in the QTP.


Assuntos
Ecossistema , Meio Ambiente , Tibet , China
20.
Plants (Basel) ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005776

RESUMO

Iris thoroldii is a perennial herbaceous plant with yellow, blue, or purple flowers. The species is native to the Tibetan Plateau and adjacent areas. In the literature and databases, I. thoroldii has long been treated in synonymy with I. potaninii. Currently, yellow-flowered plants of I. thoroldii are considered I. potanii, and blue-flowered plants are considered I. zhaoana, a replacement name for I. potaninii var. ionantha. This study aimed to clarify the taxonomic identity of I. thoroldii. A critical examination of original material, herbarium specimens, images of living plants, and the literature has shown I. thoroldii to be different from I. potaninii in some previously neglected macromorphological traits and to be conspecific with I. zhaoana. Thus, I. thoroldii is removed here from the synonymy of I. potaninii and accepted as a distinct species. This is endemic to China (central Gansu, Qinghai, and northwestern Sichuan provinces, and also Xinjiang Uygur and Tibet autonomous regions) and reaches the highest elevations compared with all other species in the genus Iris s.l. A revised taxonomy of I. thoroldii is provided, and two color forms, often co-occurring, are accepted: the autonymic yellow-flowered form (including a new synonym I. tigridia var. flavescens for which a lectotype was designated) and a form with blue or purple colors is proposed here, I. thoroldii f. ionantha. In addition, images of type specimens and detailed photographs of living plants for easy identification, along with the list of specimens of I. thoroldii that were examined, and also, comments on its distribution and habitats are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA