Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 217, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098911

RESUMO

Aberrant alternative splicing events play a critical role in cancer biology, contributing to tumor invasion, metastasis, epithelial-mesenchymal transition, and drug resistance. Recent studies have shown that alternative splicing is a key feature for transcriptomic variations in colorectal cancer, which ranks third among malignant tumors worldwide in both incidence and mortality. Long non-coding RNAs can modulate this process by acting as trans-regulatory agents, recruiting splicing factors, or driving them to specific targeted genes. LncH19 is a lncRNA dis-regulated in several tumor types and, in colorectal cancer, it plays a critical role in tumor onset, progression, and metastasis. In this paper, we found, that in colorectal cancer cells, the long non-coding RNA H19 can bind immature RNAs and splicing factors as hnRNPM and RBFOX2. Through bioinformatic analysis, we identified 57 transcripts associated with lncH19 and containing binding sites for both splicing factors, hnRNPM, and RBFOX2. Among these transcripts, we identified the mRNA of the GTPase-RAC1, whose alternatively spliced isoform, RAC1B, has been ascribed several roles in the malignant transformation. We confirmed, in vitro, the binding of the splicing factors to both the transcripts RAC1 and lncH19. Loss and gain of expression experiments in two colorectal cancer cell lines (SW620 and HCT116) demonstrated that lncH19 is required for RAC1B expression and, through RAC1B, it induces c-Myc and Cyclin-D increase. In vivo, investigation from biopsies of colorectal cancer patients showed higher levels of all the explored genes (lncH19, RAC1B, c-Myc and Cyclin-D) concerning the healthy counterpart, thus supporting our in vitro model. In addition, we identified a positive correlation between lncH19 and RAC1B in colorectal cancer patients. Finally, we demonstrated that lncH19, as a shuttle, drives the splicing factors RBFOX2 and hnRNPM to RAC1 allowing exon retention and RAC1B expression. The data shown in this paper represent the first evidence of a new mechanism of action by which lncH19 carries out its functions as an oncogene by prompting colorectal cancer through the modulation of alternative splicing.


Assuntos
Processamento Alternativo , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA , RNA Longo não Codificante , Proteínas rac1 de Ligação ao GTP , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Front Pharmacol ; 15: 1302134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881877

RESUMO

Background: The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods: The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results: Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion: This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.

3.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547058

RESUMO

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA , Dioxigenases , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , RNA , Evasão da Resposta Imune , Glioma/patologia , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , RNA Nuclear Pequeno , Microambiente Tumoral , Fatores de Processamento de RNA/genética , Proteínas Repressoras/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4108-4122, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877394

RESUMO

Meiotic initiation is a critical step in gametogenesis. Recently, some genes required for meiotic initiation have been identified. However, meiosis-initiating factors and the underlying mechanisms are far from being fully understood. We have established a long-term culture system of spermatogonial stem cells (SSCs) and an in vitro model of meiotic initiation using mouse SSCs. Our previous study revealed that the RNA-binding protein RBFOX2 may regulate meiotic initiation, but the role and the mechanism need to be further elucidated. In this study, we constructed RBFOX2 knockdown SSC lines by using lentivirus-mediated gene delivery method, and found that the knockdown SSCs underwent normal self-renewal, mitosis and differentiation. However, they were unable to initiate meiosis when treated with retinoic acid, and they underwent apoptosis. These results indicate that RBFOX2 plays an essential role in meiotic initiation of spermatogonia. This work provides new clues for understanding the functions of RNA-binding proteins in meiotic initiation.


Assuntos
Meiose , Espermatogônias , Camundongos , Masculino , Animais , Espermatogônias/metabolismo , Meiose/genética , Diferenciação Celular , Tretinoína/metabolismo , Tretinoína/farmacologia , Mitose , Testículo/metabolismo
5.
Genome Biol ; 24(1): 77, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069586

RESUMO

We present RCRUNCH, an end-to-end solution to CLIP data analysis for identification of binding sites and sequence specificity of RNA-binding proteins. RCRUNCH can analyze not only reads that map uniquely to the genome but also those that map to multiple genome locations or across splice boundaries and can consider various types of background in the estimation of read enrichment. By applying RCRUNCH to the eCLIP data from the ENCODE project, we have constructed a comprehensive and homogeneous resource of in-vivo-bound RBP sequence motifs. RCRUNCH automates the reproducible analysis of CLIP data, enabling studies of post-transcriptional control of gene expression.


Assuntos
Proteínas de Ligação a RNA , RNA , RNA/metabolismo , Análise de Sequência de RNA , Sítios de Ligação/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Cell Rep Med ; 4(3): 100962, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36889320

RESUMO

Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco , Adulto , Criança , Humanos , Splicing de RNA/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Isoformas de Proteínas/genética , Mutação , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
7.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674797

RESUMO

Heart failure is the final stage of various cardiovascular diseases and seriously threatens human health. Increasing mediators have been found to be involved in the pathogenesis of heart failure, including the RNA binding protein RBFox2. It participates in multiple aspects of the regulation of cardiac function and plays a critical role in the process of heart failure. However, how RBFox2 itself is regulated remains unclear. Here, we dissected transcriptomic signatures, including mRNAs and miRNAs, in a mouse model of heart failure after TAC surgery. A global analysis showed that an asymmetric alternation in gene expression and a large-scale upregulation of miRNAs occurred in heart failure. An association analysis revealed that the latter not only contributed to the degradation of numerous mRNA transcripts, but also suppressed the translation of key proteins such as RBFox2. With the aid of Ago2 CLIP-seq data, luciferase assays verified that RBFox2 was targeted by multiple miRNAs, including Let-7, miR-16, and miR-200b, which were significantly upregulated in heart failure. The overexpression of these miRNAs suppressed the RBFox2 protein and its downstream effects in cardiomyocytes, which was evidenced by the suppressed alternative splicing of the Enah gene and impaired E-C coupling via the repression of the Jph2 protein. The inhibition of Let-7, the most abundant miRNA family targeting RBFox2, could restore the RBFox2 protein as well as its downstream effects in dysfunctional cardiomyocytes induced by ISO treatment. In all, these findings revealed the molecular mechanism leading to RBFox2 depression in heart failure, and provided an approach to rescue RBFox2 through miRNA inhibition for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Processamento de RNA/genética , Insuficiência Cardíaca/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
8.
Environ Toxicol ; 38(3): 522-533, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36336961

RESUMO

Laryngeal cancer (LC) is the most common aggressive malignancy of the head and neck. LncRNA ZNFX1 antisense RNA 1 (ZFAS1) displays oncogenic properties in head and neck squamous cell carcinoma, but its regulatory role in laryngeal cancer progression remains obscure. Here, we found that ZFAS1 expression in laryngeal cancer tissues and cells was higher than that in adjacent normal tissues and normal nasopharyngeal epithelial cells. Highly expressed ZFAS1 was associated with advanced lymph node metastasis stages and clinical stages. ZFAS1 overexpression promoted LC cell proliferation, invasion, and N-cadherin and Vimentin expression, and suppressed E-cadherin expression. While ZFAS1 knockdown played an opposite role. Mechanistically, ZFAS1 stabilized RNA binding fox-1 homolog 2 (RBFOX2) protein expression by binding to RBFOX2, and RBFOX2 overexpression reversed the effect of ZFAS1 silence on cell functions. Moreover, highly expressed RBFOX2 led to skipping of MENA exon 11a and generating a pro-invasive isoform (MENAINV ). MENAINV overexpression effectively abolished the inhibitory effect of RBFOX2 knockdown on cell malignant progression. Furthermore, Hep2 cells infected with lentivirus-mediated ZFAS1 shRNA or negative control shRNA were subcutaneously injected into mice to assess the role of ZFAS1 in tumor growth. And the data showed that silencing ZFAS1 in vivo hindered xenograft tumor growth. In conclusion, silencing ZFAS1 alleviated malignant progression of laryngeal cancer cells and mouse xenograft tumor growth by regulating RBFOX2-mediated alternative splicing of MENA.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Neoplasias Laríngeas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Processamento Alternativo , Invasividade Neoplásica/genética , RNA Interferente Pequeno/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Redox Biol ; 57: 102493, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182807

RESUMO

Endometrial cancer (EC) is one of the most common gynecological cancers. Ferroptosis is a newly identified form of cell death characterized by iron-dependent lipid peroxide accumulation. Circular RNAs (circRNAs) have emerged as critical regulators for cancer development. However, circRNA-mediated modulation of ferroptosis in EC is yet to be clarified. In this study, we found that circRAPGEF5 expression was elevated in EC tissues compared to the normal endometrial tissues. In vitro and in vivo functional analysis demonstrated that circRAPGEF5 facilitates rapid proliferation of EC cells. RNA binding protein fox-1 homolog 2 (RBFOX2), a splicing regulator, was identified as the protein interacts with circRAPGEF5. Further studies revealed that circRAPGEF5 can bind to the Fox-1 C-terminal domain of RBFOX2 and induces specific exon exclusion of TFRC through obstructing the binding of RBFOX2 to pre-mRNA. As a result, elevated levels of circRAPGEF5 lead to ferroptosis resistance via the decreased labile iron pool and attenuated lipid peroxide production in EC cells. Additionally, a series of gain- and loss-of-function experiments demonstrated that knocking down or overexpressing RBFOX2 reversed the effects of knocking down or overexpressing circRAPGEF5 in EC cells. Finally, it is revealed that circRAPGEF5 promote the formation of TFRC with exon-4 skipping and confer ferroptosis resistance in EC cells through the interaction with RBFOX2. Collectively, these findings provide new insight into the molecular mechanism in which circRNAs mediate mediates ferroptosis via modulating alternative splicing, and circRAPGEF5/RBFOX2 splicing axis could be a promising therapeutic target for treating EC.

10.
Mol Neurobiol ; 59(8): 4854-4868, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35641779

RESUMO

LncRNA myocardial infarction-associated transcript (MIAT) alleviates acute spinal cord injury (ASCI)-induced neuronal cell apoptosis, but the specific mechanism of it involved in regulating SCI progression needs further exploration. Here, a SCI rat model was established, followed by administration with adenovirus-mediated MIAT overexpression vector (Ad-MIAT) alone or together with Ad-RBFOX2 (RNA binding fox-1 homolog 2). The data indicated that MIAT overexpression promoted motor function recovery, improved morphology of injured tissues, and restrained neuron loss and cell apoptosis in SCI rats. Then, PC-12 cells were treated with H2O2 to induce cell injury. And highly expressed MIAT suppressed H2O2-caused decrease in cell viability and increase in cell apoptosis. MIAT stabilized RBFOX2 protein expression by binding to RBFOX2, thereby promoting RBFOX2-induced upregulation of anti-apoptotic MCL-1L (myeloid cell leukemia sequence 1) and reduction of pro-apoptotic MCL-1S. And silencing RBFOX2 in vitro blocked the inhibitory effect of MIAT on cell apoptosis. Moreover, MCL-1-specific steric-blocking oligonucleotides (SBOs) were used to transfer the MCL-1 pre-mRNA splicing pattern from MCL-1L to MCL-1S. SBOs reversed the protection effect of RBFOX2 overexpression on H2O2-induced cell injury. Furthermore, overexpression of MCL-1L instead of MCL-1S facilitated autophagy activation in H2O2-stimulated cells. Interestingly, co-overexpression of MIAT and RBFOX2 had a better promoting effect on SCI recovery. In conclusion, MIAT mitigated SCI by promoting RBFOX2-mediated alternative splicing of MCL-1. Our findings might provide a promising therapeutic target for SCI.


Assuntos
MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante/genética , Traumatismos da Medula Espinal , Processamento Alternativo/genética , Animais , Apoptose/genética , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , RNA Longo não Codificante/metabolismo , Ratos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética
11.
Mol Cell Biol ; 42(5): e0050321, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35404107

RESUMO

Aberrant alternative splicing (AS) of pre-mRNAs promotes the development and proliferation of cancerous cells. Accordingly, we had previously observed higher levels of the aryl hydrocarbon receptor nuclear translocator (ARNT) spliced variant isoform 1 in human lymphoid malignancies compared to that in normal lymphoid cells, which is a consequence of increased inclusion of alternative exon 5. ARNT is a transcription factor that has been implicated in the survival of various cancers. Notably, we found that ARNT isoform 1 promoted the growth and survival of lymphoid malignancies, but the regulatory mechanism controlling ARNT AS is unclear. Here, we report cis- and trans-regulatory elements which are important for the inclusion of ARNT exon 5. Specifically, we identified recognition motifs for the RNA-binding protein RBFOX2, which are required for RBFOX2-mediated exon 5 inclusion. RBFOX2 upregulation was observed in lymphoid malignancies, correlating with the observed increase in ARNT exon 5 inclusion. Moreover, suppression of RBFOX2 significantly reduced ARNT isoform 1 levels and cell growth. These observations reveal RBFOX2 as a critical regulator of ARNT AS in lymphoid malignancies and suggest that blocking the ARNT-specific RBFOX2 motifs to decrease ARNT isoform 1 levels is a viable option for targeting the growth of lymphoid malignancies.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Neoplasias , Processamento Alternativo/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Éxons/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/metabolismo
12.
Int J Biochem Cell Biol ; 144: 106172, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124219

RESUMO

The underlying mechanisms of splicing regulation through non-canonical splice junction processing remain largely unknown. Here, we identified two RBFOX2 splicing isoforms by alternative 3' splice site selection of exon 9; the non-canonical splice junction processed RBFOX2 transcript (RBFOX2-N.C.) was expressed by the selection of the 3' splice GG acceptor sequence. The cytoplasmic localization of RBFOX2-C., a canonical splice junction-processed RBFOX2 transcript, was different from that of RBFOX2-N.C., which showed nuclear localization. In addition, we confirmed that RBFOX2-C. showed a significantly stronger localization into stress granules than RBFOX2-N.C. upon sodium arsenite treatment. Next, we investigated the importance of non-canonical 3' splice GG sequence selection of specific cis-regulatory elements using minigene constructs of the RBFOX2 gene. We found that the non-canonical 3' splice GG sequence and suboptimal branch point site adjacent region were critical for RBFOX2-N.C. expression through a non-canonical 3' splice selection. Our results suggest a regulatory mechanism for the non-canonical 3' splice selection in the RBFOX2 gene, providing a basis for studies related to the regulation of alternative pre-mRNA splicing through non-canonical splice junction processing.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Processamento Alternativo , Éxons/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
13.
Cell Rep ; 37(5): 109910, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731606

RESUMO

RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/metabolismo , Poliadenilação , Fatores de Processamento de RNA/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Mioblastos Cardíacos/ultraestrutura , Fatores de Processamento de RNA/genética , Ratos , Tropomiosina/genética , Tropomiosina/metabolismo
14.
Am J Reprod Immunol ; 86(6): e13491, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363260

RESUMO

PROBLEM: Proper placental development is pivotal to ensure healthy pregnancy outcomes. Among the multiple cellular mechanisms involved in the orchestration of this process, little is known on the role of alternative splicing events in the modulation of trophoblast cell biology. Here, we evaluated the expression of the alternative splicing regulator Rbfox2 in the pre- and post-placentation period in mouse pregnancies in both healthy and pathological settings. METHOD OF STUDY: Immunofluorescence analysis of Rbfox2 expression in mouse implantation sites collected during the pre-placentation period (E5-E7) and post-placentation (E13). RESULTS: We identified a progressive increase of Rbfox2 levels throughout the peri-implantation period with a shift from a cytoplasmatic expression on E5-E6 to a predominantly nuclear expression on E7, together with a prominent expression of this factor in both subcellular compartments of the primitive placenta. Our results further showed that in contrast to healthy gestations, Rbfox2 expression decreased in preeclamptic models during the post-placentation period. Finally, we further demonstrated enhanced expression of Rbfox2 proteins in allogeneic pregnancy compared to syngeneic models. CONCLUSIONS: Our findings uncover a novel role for Rbfox2-controlled splicing events in the modulation of trophoblast function, with potential implications for the pathogenesis of preeclampsia and other pregnancy complications originated from defective placentation.


Assuntos
Regulação da Expressão Gênica , Placentação/genética , Pré-Eclâmpsia/metabolismo , Fatores de Processamento de RNA/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Gravidez , Fatores de Processamento de RNA/genética , Trofoblastos/metabolismo
15.
Int J Cancer ; 149(10): 1787-1800, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34346508

RESUMO

The splicing of microexons (very small exons) is frequently dysregulated in the brain of individuals with autism spectrum disorder. However, little is known of the patterns, regulatory mechanisms and roles of microexon splicing in cancer. We here examined the transcriptome-wide profile of microexon splicing in matched colorectal cancer (CRC) and normal tissue specimens. Out of 1492 microexons comprising 3 to 15 nucleotides, 21 (1%) manifested differential splicing between CRC and normal tissue. The 21 genes harboring the differentially spliced microexons were enriched in gene ontology terms related to cell adhesion and migration. RNA interference-mediated knockdown experiments identified two splicing factors, RBFOX2 and PTBP1, as regulators of microexon splicing in CRC cells. RBFOX2 and PTBP1 were found to directly bind to microexon-containing pre-mRNAs and to control their splicing in such cells. Differential microexon splicing was shown to be due, at least in part, to altered expression of RBFOX2 and PTBP1 in CRC tissue compared to matched normal tissue. Finally, we found that changes in the pattern of microexon splicing were associated with CRC metastasis. Our data thus suggest that altered expression of RBFOX2 and PTBP1 might influence CRC metastasis through the regulation of microexon splicing.


Assuntos
Processamento Alternativo , Neoplasias Colorretais/genética , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células HCT116 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Immunoblotting , Metástase Neoplásica , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Adv Sci (Weinh) ; 8(16): e2004852, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180133

RESUMO

20-30% of patients with nasopharyngeal carcinoma (NPC) develop distant metastasis or recurrence leading to poor survival, of which the underlying key molecular events have yet to be addressed. Here alternative splicing events in 85 NPC samples are profiled using transcriptome analysis and it is revealed that the long isoform of GOLIM4 (-L) with exon-7 is highly expressed in NPC and associated with poor prognosis. Lines of evidence demonstrate the pro-tumorigenic function of GOLIM4-L in NPC cells. It is further revealed that RBFOX2 binds to a GGAA motif in exon-7 and promotes its inclusion forming GOLIM4-L. RBFOX2 knockdown suppresses the tumorigenesis of NPC cells, phenocopying GOLIM4-L knockdown, which is significantly rescued by GOLIM4-L overexpression. High expression of RBFOX2 is correlated with the exon-7 inclusion of GOLIM4 in NPC biopsies and associated with worse prognosis. It is observed that RBFOX2 and GOLIM4 can influence vesicle-mediated transport through maintaining the organization of Golgi apparatus. Finally, it is revealed that RAB26 interacts with GOLIM4 and mediates its tumorigenic potentials in NPC cells. Taken together, the findings provide insights into how alternative splicing contributes to NPC development, by highlighting a functional link between GOLIM4-L and its splicing regulator RBFOX2 activating vesicle-mediated transport involving RAB26.


Assuntos
Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Proteínas Repressoras/genética , Proteínas de Transporte Vesicular/genética , Humanos
17.
Biochimie ; 187: 25-32, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022289

RESUMO

Insulin receptor (IR) pre-mRNA undergoes alternative splicing that produces two isoforms, IR-A and IR-B. The ratio of IR-A to IR-B varies among tissues, which strongly suggests that IR mRNA alternative splicing is regulated in a tissue-specific manner. However, the precise molecular mechanism for IR alternative splicing remains to be elucidated, especially in liver. In this study, we have analyzed IR alternative splicing mechanism by preparing a mini-gene splicing reporter with rat genomic DNA. The splicing reporter that contains exon 11 and its flanking intronic sequences could reproduce alternative splicing pattern in rat hepatoma H4IIE cells. Introducing several deletions in introns of the reporter revealed that intron 11 contains the region near exon 11 essential to promote exon 11 inclusion. This region contains an UGCAUG sequence, a specific binding site for the Rbfox splicing regulator, and mutation in this sequence results in exon 11 skipping. Furthermore, RbFox2 knockdown in H4IIE cells enhanced exon 11 skipping of endogenous IR pre-mRNA. Lastly mutations in the SRSF3 binding site of exon11 together with the Rbfox2 binding site completely abolished exon 11 inclusion with a mini-gene reporter pre-mRNA. Our results indicate that RbFox2 and SRSF3 proteins mediate exon 11 inclusion in rat hepatoma cells.


Assuntos
Processamento Alternativo , Carcinoma Hepatocelular/metabolismo , Éxons , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Processamento de RNA/metabolismo , Receptor de Insulina/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética , Fatores de Processamento de RNA/genética , Ratos , Receptor de Insulina/genética
18.
Front Cell Dev Biol ; 9: 796451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127712

RESUMO

Long noncoding RNAs (lncRNAs) have been reported to regulate diverse tumorigenic processes. However, little is known about long intergenic non-protein coding RNA 00893 (LINC00893) and its role in gastric cancer (GC). Herein we investigated its biological functions and molecular mechanism in GC. LINC00893 was decreased in GC tissues but significantly elevated in AGS cells after treatment with Nutlin-3. In GC patients, it was found that low expression of LINC00893 was correlated with tumor growth, metastasis and poor survival. Functionally, overexpression of LINC00893 suppressed the proliferation, migration and invasion of GC cells. Mechanistically, LINC00893 regulated the expression of epithelial-mesenchymal transition (EMT)-related proteins by binding to RNA binding fox-1 homolog 2 (RBFOX2) and promoting its ubiquitin-mediated degradation, thus suppressing the EMT and related functions of GC. In addition, the transcription factor p53 can regulate the expression of LINC00893 in an indirect way. Taken together, these results suggested that LINC00893 regulated by p53 repressed GC proliferation, migration and invasion by functioning as a binding site for RBFOX2 to regulate its stability and the expression of EMT-related proteins. LINC00893 acts as a tumor-inhibiting lncRNA that is induced by p53 in GC and regulates EMT by binding to RBFOX2, thus providing a novel experimental basis for the clinical treatment of GC.

19.
Placenta ; 100: 142-149, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32762877

RESUMO

INTRODUCTION: RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS: Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with ßhCG and syncytin-1 as molecular indicators of fusion. RESULTS: In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated ßhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION: RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.


Assuntos
Placentação , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Trofoblastos/metabolismo , Linhagem da Célula , Feminino , Humanos , Gravidez , Cultura Primária de Células
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165620, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778749

RESUMO

Aberrations in the cGMP-PKG-Ca2+ pathway are implicated in cardiovascular complications of diverse etiologies, though involved molecular mechanisms are not understood. We performed RNA-Seq analysis to profile global changes in gene expression and exon splicing in Chagas disease (ChD) murine myocardium. Ingenuity-Pathway-Analysis of transcriptome dataset identified 26 differentially expressed genes associated with increased mobilization and cellular levels of Ca2+ in ChD hearts. Mixture-of-isoforms and Enrichr KEGG pathway analyses of the RNA-Seq datasets from ChD (this study) and diabetic (previous study) murine hearts identified alternative splicing (AS) in eleven genes (Arhgef10, Atp2b1, Atp2a3, Cacna1c, Itpr1, Mef2a, Mef2d, Pde2a, Plcb1, Plcb4, and Ppp1r12a) of the cGMP-PKG-Ca2+ pathway in diseased hearts. AS of these genes was validated by an exon exclusion-inclusion assay. Further, Arhgef10, Atp2b1, Mef2a, Mef2d, Plcb1, and Ppp1r12a genes consisted RBFOX2 (RNA-binding protein) binding-site clusters, determined by analyzing the RBFOX2 CLIP-Seq dataset. H9c2 rat heart cells transfected with Rbfox2 (vs. scrambled) siRNA confirmed that expression of Rbfox2 is essential for proper exon splicing of genes of the cGMP-PKG-Ca2+ pathway. We conclude that changes in gene expression may influence the Ca2+ mobilization pathway in ChD, and AS impacts the genes involved in cGMP/PKG/Ca2+ signaling pathway in ChD and diabetes. Our findings suggest that ChD patients with diabetes may be at increased risk of cardiomyopathy and heart failure and provide novel ways to restore cGMP-PKG regulated signaling networks via correcting splicing patterns of key factors using oligonucleotide-based therapies for the treatment of cardiovascular complications.


Assuntos
Processamento Alternativo/genética , Cálcio/metabolismo , Cardiomiopatias/genética , GMP Cíclico/genética , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Transdução de Sinais/genética , Animais , Linhagem Celular , Feminino , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA