Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
JCI Insight ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088281

RESUMO

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional and biochemical dissection of two multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Furthermore, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency, but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.

2.
Mol Cell ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127036

RESUMO

N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.

3.
Biomark Insights ; 19: 11772719241258642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161926

RESUMO

Objective: Colon cancer is associated with multiple levels of molecular heterogeneity. RNA processing converts primary transcriptional RNA to mature RNA, which drives tumourigenesis and its maintenance. The characterisation of RNA processing genes in colon cancer urgently needs to be elucidated. Methods: In this study, we obtained 1033 relevant samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to explore the heterogeneity of RNA processing phenotypes in colon cancer. Firstly, Unsupervised hierarchical cluster analysis detected 4 subtypes with specific clinical outcomes and biological features via analysis of 485 RNA processing genes. Next, we adopted the least absolute shrinkage and selection operator (LASSO) as well as Cox regression model with penalty to characterise RNA processing-related prognostic features. Results: An RNA processing-related prognostic risk model based on 10 genes including FXR1, MFAP1, RBM17, SAGE1, SNRPA1, SRRM4, ADAD1, DDX52, ERI1, and EXOSC7 was identified finally. A composite prognostic nomogram was constructed by combining this feature with the remaining clinical variables including TNM, age, sex, and stage. Genetic variation, pathway activation, and immune heterogeneity with risk signatures were also analysed via bioinformatics methods. The outcomes indicated that the high-risk subgroup was associated with higher genomic instability, increased proliferative and cycle characteristics, decreased tumour killer CD8+ T cells and poorer clinical prognosis than the low-risk group. Conclusion: This prognostic classifier based on RNA-edited genes facilitates stratification of colon cancer into specific subgroups according to TNM and clinical outcomes, genetic variation, pathway activation, and immune heterogeneity. It can be used for diagnosis, classification and targeted treatment strategies comparable to current standards in precision medicine. It provides a rationale for elucidation of the role of RNA editing genes and their clinical significance in colon cancer as prognostic markers.

4.
Front Mol Neurosci ; 17: 1426410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149613

RESUMO

In the nervous system, alternative RNA processing is particularly prevalent, which results in the expression of thousands of transcript variants found in no other tissue. Neuron-specific RNA-binding proteins co-transcriptionally regulate alternative splicing, alternative polyadenylation, and RNA editing, thereby shaping the RNA identity of nervous system cells. Recent evidence suggests that interactions between RNA-binding proteins and cis-regulatory elements such as promoters and enhancers play a role in the determination of neuron-specific expression profiles. Here, we discuss possible mechanisms through which transcription and RNA processing cross-talk to generate the uniquely complex neuronal transcriptome, with a focus on alternative 3'-end formation.

5.
J Clin Invest ; 134(14)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-39007267

RESUMO

Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.


Assuntos
Adenosina , Proteínas de Ciclo Celular , Inflamação , Fatores de Processamento de RNA , Animais , Humanos , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Camundongos Knockout , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sepse/metabolismo , Sepse/genética , Sepse/patologia , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
6.
Mol Cell ; 84(15): 2882-2899.e10, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39032489

RESUMO

The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.


Assuntos
Clivagem do RNA , Humanos , Células HEK293 , Ácido Fítico/metabolismo , Mutação , Núcleo Celular/metabolismo , Núcleo Celular/genética , Domínio Catalítico , Ligação Proteica , RNA Nucleotidiltransferases
7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000215

RESUMO

The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.


Assuntos
Células Epiteliais , Transcriptoma , Animais , Feminino , Suínos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Células Cultivadas , Oviductos/metabolismo , Oviductos/citologia , Técnicas de Cultura de Células/métodos , Regulação da Expressão Gênica , Tubas Uterinas/metabolismo , Tubas Uterinas/citologia
8.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948813

RESUMO

Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing and Nanopore direct RNA sequencing over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity and a rise in inosine and pseudouridine editing events in transcripts from older animals. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.

9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000310

RESUMO

Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.


Assuntos
RNA Nucleolar Pequeno , Ribonucleoproteínas Nucleolares Pequenas , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Animais , Processamento Pós-Transcricional do RNA , Neoplasias/genética , Neoplasias/metabolismo
10.
J Biol Chem ; 300(8): 107571, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009343

RESUMO

The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Pathogenic variants in EXOSC genes, which encode structural subunits of this complex, are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene that causes a collection of clinical features in two affected siblings. This missense variant (NM_019037.3: exon3:c.560T>C) changes a leucine residue within a conserved region of EXOSC4 to proline (p.Leu187Pro). The two affected individuals show prenatal growth restriction, failure to thrive, global developmental delay, intracerebral and basal ganglia calcifications, and kidney failure. Homozygosity for the damaging variant was identified by exome sequencing with Sanger sequencing to confirm segregation. To explore the functional consequences of this amino acid change, we modeled EXOSC4-L187P in the corresponding budding yeast protein, Rrp41 (Rrp41-L187P). Cells that express Rrp41-L187P as the sole copy of the essential Rrp41 protein show growth defects. Steady-state levels of both Rrp41-L187P and EXOSC4-L187P are decreased compared to controls, and EXOSC4-L187P shows decreased copurification with other RNA exosome subunits. RNA exosome target transcripts accumulate in rrp41-L187P cells, including the 7S precursor of 5.8S rRNA. Polysome profiles show a decrease in actively translating ribosomes in rrp41-L187P cells as compared to control cells with the incorporation of 7S pre-rRNA into polysomes. This work adds EXOSC4 to the structural subunits of the RNA exosome that have been linked to human disease and defines foundational molecular defects that could contribute to the adverse phenotypes caused by EXOSC pathogenic variants.

11.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892257

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs which contribute to the regulation of many physiological and pathological processes. Conventionally, miRNAs perform their activity in the cytoplasm where they regulate gene expression by interacting in a sequence-specific manner with mature messenger RNAs. Recent studies point to the presence of mature miRNAs in the nucleus. This review summarizes current findings regarding the molecular activities of nuclear miRNAs. These molecules can regulate gene expression at the transcriptional level by directly binding DNA on the promoter or the enhancer of regulated genes. miRNAs recruit different protein complexes to these regions, resulting in activation or repression of transcription, through a number of molecular mechanisms. Hematopoiesis is presented as a paradigmatic biological process whereby nuclear miRNAs possess a relevant regulatory role. Nuclear miRNAs can influence gene expression by affecting nuclear mRNA processing and by regulating pri-miRNA maturation, thus impacting the biogenesis of miRNAs themselves. Overall, nuclear miRNAs are biologically active molecules that can be critical for the fine tuning of gene expression and deserve further studies in a number of physiological and pathological conditions.


Assuntos
Núcleo Celular , Regulação da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animais , Hematopoese/genética
12.
Cell ; 187(16): 4408-4425.e23, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38925112

RESUMO

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.


Assuntos
Poli A , Poliadenilação , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Poli A/metabolismo , Animais , Camundongos , Íntrons/genética , Transcriptoma/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica
13.
J Biol Chem ; 300(8): 107488, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908752

RESUMO

Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.

14.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927025

RESUMO

The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.


Assuntos
Proteínas Arqueais , Exossomos , Thermoplasma , Thermoplasma/metabolismo , Exossomos/metabolismo , Exossomos/química , Cristalografia por Raios X , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA
15.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932230

RESUMO

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Replicação Viral , HIV-1/genética , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Regulação Viral da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891862

RESUMO

RNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host's RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.


Assuntos
Processamento Alternativo , COVID-19 , Interferons , Isoformas de Proteínas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/genética , COVID-19/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferons/metabolismo , Interferons/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo
17.
Methods Mol Biol ; 2822: 431-441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907933

RESUMO

Stopped-flow fluorescence spectroscopy is a highly sensitive method for measuring rapid enzyme kinetics. A wide range of fluorophores can be employed, and fluorescence and fluorescence polarization can be measured. Thus, binding, conformational changes, and catalysis can, in principle, be measured, making it helpful in probing the entire kinetic landscape of a reaction. In this chapter, we use the bacterial RNA processing enzyme ribonuclease P (RNase P) as a model system to illustrate the determination of the kinetic constants for substrate binding and cleavage, thus allowing mechanistic questions regarding the effects of reaction conditions, mutations, or drug binding to be answered.


Assuntos
Polarização de Fluorescência , Ribonuclease P , Espectrometria de Fluorescência , Cinética , Polarização de Fluorescência/métodos , Ribonuclease P/metabolismo , Ribonuclease P/química , Espectrometria de Fluorescência/métodos
18.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713285

RESUMO

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Assuntos
AMP Cíclico , Resposta ao Choque Térmico , Nicotiana , Proteínas de Plantas , Fosforilação , Nicotiana/genética , Nicotiana/metabolismo , Resposta ao Choque Térmico/fisiologia , AMP Cíclico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
19.
Adv Biol (Weinh) ; 8(7): e2400006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797893

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.


Assuntos
Precursores de RNA , RNA Nuclear Pequeno , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animais , Splicing de RNA , Processamento Pós-Transcricional do RNA
20.
Viruses ; 16(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793664

RESUMO

Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.


Assuntos
Regulação Viral da Expressão Gênica , Papillomaviridae , RNA Viral , Proteínas de Ligação a RNA , Replicação Viral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Papillomaviridae/genética , Papillomaviridae/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA