Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Plant Cell Rep ; 43(11): 263, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412663

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.


Assuntos
Reguladores de Crescimento de Plantas , Plantas , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/microbiologia , Plantas/imunologia , Imunidade Vegetal , Transdução de Sinais , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Interações Hospedeiro-Patógeno , Oxirredução
2.
J Neurosurg Case Lessons ; 8(15)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378523

RESUMO

BACKGROUND: Responsive neurostimulation (RNS) is often considered to be a palliative therapy for drug-resistant epilepsy (DRE) and is generally not considered to be a treatment for patients with tuberous sclerosis complex (TSC). Here, the authors present the case of a 24-year-old male with TSC who obtained seizure freedom following RNS device implantation. OBSERVATIONS: Prior to RNS device implantation, the patient underwent tuberectomies, subependymal giant cell astrocytoma resection, vagus nerve stimulator placement, and left frontal lobe resection but continued to have frequent seizures. An RNS device was implanted, which initially led to a decrease in seizures, but he continued to have 12 seizures per month. He then underwent lead revision for stimulation via a different electrode. After that lead change, he had no seizures for almost 3 years. In the following 3 years, he had two episodes of breakthrough seizures, both of which occurred with medication weans. Although the patient still requires antiseizure medication, he has had years of seizure freedom with RNS therapy. LESSONS: This study exhibits the potential effectiveness of RNS therapy for patients with TSC and DRE. RNS should be considered for patients with TSC when other therapies have not sufficiently treated their epilepsy. https://thejns.org/doi/10.3171/CASE23411.

3.
ACS Appl Mater Interfaces ; 16(42): 56884-56901, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39401179

RESUMO

In ulcerative colitis (UC), the formation of an inflammatory environment is due to the combined effects of excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), overproduction of proinflammatory cytokines, and disruption of immune system function. There are many kinds of traditional drugs for the clinical treatment of UC, but long-term drug use can cause toxic side effects and drug resistance and can also reduce patient compliance and other drawbacks. Hence, in light of the clinical challenges associated with UC, including the limitations of existing treatments, intense adverse reactions and the development of resistance to medications, no novel therapeutic agents that offer effective relief and maintain a high level of biosafety are urgently needed. Although many anti-inflammatory nanomedicines have been developed by researchers, the development of efficient and nontoxic nanomedicines is still a major challenge in clinical medicine. Using the natural product gallic acid and the metal compound manganese chloride, a highly effective and nontoxic multifunctional nanoenzyme was developed for the treatment of UC. Nanozymes can effectively eliminate ROS and RNS to reduce the inflammation of intestinal epithelial cells caused by oxidation, facilitate the restoration of the intestinal epithelial barrier through the upregulation of tight junction protein expression, and balance the intestinal microbiota to maintain the stability of the intestinal environment. Using a rodent model designed to mimic UC, we monitored body weight, colon length, the spleen index, and the degree of tissue damage and demonstrated that manganese gallate (MnGA) nanoparticles can reduce intestinal inflammation by clearing ROS and active nitrogen. Intestinal flora sequencing revealed that MnGA nanoparticles could regulate the intestinal flora, promote the growth of beneficial bacteria and decrease the levels of detrimental bacteria within the intestinal tract in a mouse model of UC. Thus, MnGA nanoparticles can maintain the balance of the intestinal flora. This study demonstrated that MnGA nanoparticles are excellent antioxidant and effective anti-inflammatory agents, have good biosafety, and can effectively treat UC.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Ácido Gálico/química , Ácido Gálico/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Masculino , Espécies Reativas de Nitrogênio/metabolismo
4.
Epilepsia Open ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39435755

RESUMO

OBJECTIVE: To describe four cases of Responsive Neurostimulation (RNS) in the bilateral pulvinar nuclei (PUL) in individuals with drug resistant epilepsy (DRE). This will show that due to widespread PUL connectivity, bilateral PUL RNS may be an option for some individuals with bilateral multifocal epilepsy. METHODS: This study comprises two centers' experience with bilateral PUL RNS for DRE. Patients treated with bilateral PUL RNS at Westchester Medical Center (Valhalla, NY) and Corewell Health (Grand Rapids, MI) between the years 2019 and 2022 were analyzed and described. Presented here are methods for target selection, device programming, and clinical outcomes. RESULTS: Two patients with Lennox-Gastaut phenotype (aged 13 and 21 years) with posteriorly dominant discharges were implanted with bilateral PUL electrodes. Additionally, two patients (aged 20 and 31 years) with independent left and right occipital bilateral multifocal seizure onsets were implanted with bilateral RNS devices targeting the ipsilateral PUL and ipsilateral occipital cortex. Subclinical and clinical seizures were captured by RNS electrocorticography (ECoG) in all patients. RNS implantation and treatment was well-tolerated without adverse effects in all patients. Relative to baseline, two patients had 25% and 50% reduction in disabling seizures, and two patients had 71% and 100% reduction in disabling seizures. Stimulation paradigms utilized high frequency stimulation in both Lennox-Gastaut phenotype patients. Low frequency (individualized to the terminal ictal frequencies) stimulation was effective in the two bioccipital patients. SIGNIFICANCE: RNS with electrode placement targeting bilateral PUL is safe, and no adverse effects have been attributable to the pulvinar electrode placement. PUL responsive neurostimulation is potentially effective for patients with bilateral multifocal, posteriorly dominant DRE. Both high and low frequency responsive stimulation are treatment options. Longer follow-up will shed light on the ultimate reduction of seizure burden. PLAIN LANGUAGE SUMMARY: We describe four cases where stimulation devices were placed in the Pulvinar area of the thalamus (central sensory area in the brain). This is very unique and different location than where these devices are typically placed. These patients all had great outcomes with marked seizure reduction, demonstrating that this placement is both safe and effective.

6.
ACS Appl Bio Mater ; 7(10): 6800-6807, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39302413

RESUMO

Reactive nitrogen species (RNS) are more lethal than reactive oxygen species (ROS), which gives them a very promising future in the field of cancer treatment. However, there are still a few drugs available for RNS generation. In this work, two 5th-order nonlinear optical materials, FB-Fe(III)/SNP@PEG and FB-Fe(II)-FB/SNP@PEG, are synthesized. The outstanding nonlinear optical properties of FB-Fe(III)/SNP@PEG help to achieve generation of bounteous superoxide anions (O2•-) in deep tissues, while sodium nitroprusside (SNP) provides NO in the body, both of which are prerequisites for RNS generation. Meanwhile, type I and type II ROS were also generated under irradiation of a 1600 nm laser. Based on the synergistic effect of ROS and RNS, FB-Fe(III)/SNP@PEG induced mitochondrial damage and DNA fragmentation and inhibited tumor cells through apoptosis, possessing better therapeutic effects than FB-Fe(II)-FB/SNP@PEG. This work put forward an innovative strategy to achieve the cooperative release of RNS and ROS in deep tissues, which provides insights and ideas for applying nonlinear optical materials to RNS therapy.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Teste de Materiais , Tamanho da Partícula , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Nitrogênio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Raios Infravermelhos , Apoptose/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Animais
7.
Plant Cell Rep ; 43(10): 236, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313563

RESUMO

KEY MESSAGE: AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.


Assuntos
Proteínas Mitocondriais , Oxirredutases , Doenças das Plantas , Proteínas de Plantas , Vitis , Xylella , Xylella/genética , Xylella/fisiologia , Vitis/microbiologia , Vitis/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Xilema/microbiologia , Xilema/genética
8.
Environ Sci Technol ; 58(36): 16087-16099, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39205652

RESUMO

This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), and nitrous oxide (N2O), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy. The study further extends to exploring the aerosol polymerization of acrylamide (AM) into polyacrylamide (PAM), serving as a model reaction to evaluate the reactivity of different plasma-generated species, highlighting the significant role of NO2 in achieving high polymerization yields. Complementing our experimental data, molecular dynamics (MD) simulations, based on the ReaxFF reactive force field potential, explored the interactions between reactive oxygen species, specifically hydroxyl radicals (OH) and hydrogen peroxide (H2O2), with water molecules. Understanding these interactions, combined with the optimization of plasma chemistry, is crucial for enhancing the effectiveness of DBD plasma in environmental applications like air purification and water treatment.


Assuntos
Simulação de Dinâmica Molecular , Óxido Nitroso , Espécies Reativas de Nitrogênio , Espécies Reativas de Nitrogênio/química , Óxido Nitroso/química , Gases em Plasma/química , Dióxido de Nitrogênio/química , Peróxido de Hidrogênio/química
9.
Mikrochim Acta ; 191(9): 523, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112841

RESUMO

An antifouling peptide hydrogel-based electrochemical biosensor was developed for real-time monitoring of hydrogen peroxide (H2O2) and nitric oxide (NO) released by 3D cultured breast cancer cells upon drug stimulation. Platinum nanoparticles (Pt NPs) were electrodeposited on titanium mesh (Pt NPs/TM) to enhance sensitivity and shown to possess excellent electrocatalytic ability toward H2O2 and NO. The composite hydrogel formed by co-assembling of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) and a fluorine methoxycarbonyl group-functionalized Lys-(Fmoc)-Asp was coated on Pt NPs/TM electrode surface to provide cellular scaffolding. Their favorable biocompatibility promoted cell adhesion and growth, while good hydrophilicity endowed the sensor with greatly enhanced antifouling capability in complex cell culture environments. The biosensor successfully determined H2O2 and NO secretion from both non-metastatic and metastatic breast cancer cells in real time. Our results demonstrated robust associations between reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and cell malignancy, with the main difference in oxidative stress between the two subtypes of cells being NO release, particularly emphasizing RNS's critical leading in driving cancer metastasis and invasion progression. This sensor holds great potential for cell-release research under the in vivo-like microenvironment and could reveal RNS as an attractive therapeutic target for treating breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Técnicas Eletroquímicas , Hidrogéis , Peróxido de Hidrogênio , Óxido Nítrico , Platina , Humanos , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Hidrogéis/química , Neoplasias da Mama/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Platina/química , Nanopartículas Metálicas/química , Feminino , Peptídeos/química , Peptídeos/farmacologia , Linhagem Celular Tumoral , Titânio/química , Células MCF-7 , Técnicas de Cultura de Células em Três Dimensões/métodos
10.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126104

RESUMO

Melatonin regulates vital physiological processes in animals, such as the circadian cycle, sleep, locomotion, body temperature, food intake, and sexual and immune responses. In plants, melatonin modulates seed germination, longevity, circadian cycle, photoperiodicity, flowering, leaf senescence, postharvest fruit storage, and resistance against biotic and abiotic stresses. In plants, the effect of melatonin is mediated by various regulatory elements of the redox network, including RNS and ROS. Similarly, the radical gas NO mediates various physiological processes, like seed germination, flowering, leaf senescence, and stress responses. The biosynthesis of both melatonin and NO takes place in mitochondria and chloroplasts. Hence, both melatonin and nitric oxide are key signaling molecules governing their biological pathways independently. However, there are instances when these pathways cross each other and the two molecules interact with each other, resulting in the formation of N-nitrosomelatonin or NOMela, which is a nitrosated form of melatonin, discovered recently and with promising roles in plant development. The interaction between NO and melatonin is highly complex, and, although a handful of studies reporting these interactions have been published, the exact molecular mechanisms governing them and the prospects of NOMela as a NO donor have just started to be unraveled. Here, we review NO and melatonin production as well as RNS-melatonin interaction under normal and stressful conditions. Furthermore, for the first time, we provide highly sensitive, ozone-chemiluminescence-based comparative measurements of the nitric oxide content, as well as NO-release kinetics between NOMela and the commonly used NO donors CySNO and GSNO.


Assuntos
Melatonina , Óxido Nítrico , Plantas , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , Fenômenos Fisiológicos Vegetais
11.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201563

RESUMO

Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.


Assuntos
Óxido Nítrico , Peroxissomos , Processamento de Proteína Pós-Traducional , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo
12.
Rev. Fac. Med. UNAM ; 67(4): 7-20, jul.-ago. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1575776

RESUMO

Resumen La contaminación ambiental es uno de los factores que favorece el estrés oxidante, ya que expone al organismo a materiales diversos que generan radicales libres y afectan al sistema respiratorio, cardiovascular, inmunológico y nervioso de las personas más vulnerables como los niños, adultos mayores y personas con enfermedades crónicas. Para prevenir o reducir el estrés oxidante, el cual es un desequilibrio entre la producción de radicales libres y la capacidad del organismo de neutralizarlo, se recomienda consumir una dieta equilibrada y rica en antioxidantes naturales los cuales se encuentran diversos alimentos, especialmente en frutas y verduras con colores intensos, en las semillas y las especias. En las últimas décadas se ha demostrado la eficacia del consumo de antioxidantes naturales como: el resveratrol vino, el café, la curcumina, el ajo, la vitamina C, la vitamina E y el té verde que presentan efectos benéficos como: proteger membranas celulares, regular la expresión de genes relacionados con la inflamación, prevenir o reducir el daño endotelial, disminuir la frecuencia o severidad de enfermedades neurodegenerativas, hepáticas y pulmonares, así como estimular al sistema inmunológico.


Abstract Environmental pollution can promote oxidative stress by exposing the body to various elements and substances that generate free radicals, such as lead and vanadium. These free radicals can negatively impact the respiratory, cardiovascular, immune, and neurological systems of vulnerable populations, including children, the elderly, and those with chronic diseases. To prevent or reduce oxidative stress, it is recommended to consume a balanced diet rich in natural antioxidants. These antioxidants can be found in various foods, especially in fruits and vegetables with intense colors, seeds, and spices. In recent decades, the effectiveness of consuming natural antioxidants such as resveratrol found in wine, coffee, curcumin, garlic, vitamin C, vitamin E, and green tea has been demonstrated. These antioxidants have beneficial effects on the body, including the protection of cell membranes, regulation of gene expression associated with inflammation, prevention or reduction of endothelial damage, and the decrease or diminished severity of neurodegeneration, liver, and pulmonary disorders. Additionally, they stimulate the immune response.

13.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999186

RESUMO

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Assuntos
Metabolômica , Micorrizas , Panax notoginseng , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Triterpenos , Panax notoginseng/microbiologia , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Micorrizas/metabolismo , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análise de Componente Principal , Metaboloma
14.
Epilepsia ; 65(9): 2626-2640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052021

RESUMO

OBJECTIVE: Although >30% of epilepsy patients have drug-resistant epilepsy (DRE), typically those with generalized or multifocal disease have not traditionally been considered surgical candidates. Responsive neurostimulation (RNS) of the centromedian (CM) region of the thalamus now appears to be a promising therapeutic option for this patient population. We present outcomes following CM RNS for 13 patients with idiopathic generalized epilepsy (IGE) and eight with multifocal onsets that rapidly generalize to bilateral tonic-clonic (focal to bilateral tonic-clonic [FBTC]) seizures. METHODS: A retrospective review of all patients undergoing bilateral CM RNS by the senior author through July 2022 were reviewed. Electrodes were localized and volumes of tissue activation were modeled in Lead-DBS. Changes in patient seizure frequency were extracted from electronic medical records. RESULTS: Twenty-one patients with DRE underwent bilateral CM RNS implantation. For 17 patients with at least 1 year of postimplantation follow-up, average seizure reduction from preoperative baseline was 82.6% (SD = 19.0%, median = 91.7%), with 18% of patients Engel class 1, 29% Engel class 2, 53% Engel class 3, and 0% Engel class 4. There was a trend for average seizure reduction to be greater for patients with nonlesional FBTC seizures than for other patients. For patients achieving at least Engel class 3 outcome, median time to worthwhile seizure reduction was 203.5 days (interquartile range = 110.5-343.75 days). Patients with IGE with myoclonic seizures had a significantly shorter time to worthwhile seizure reduction than other patients. The surgical targeting strategy evolved after the first four subjects to achieve greater anatomic accuracy. SIGNIFICANCE: Patients with both primary and rapidly generalized epilepsy who underwent CM RNS experienced substantial seizure relief. Subsets of these patient populations may particularly benefit from CM RNS. The refinement of lead targeting, tuning of RNS system parameters, and patient selection are ongoing areas of investigation.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Generalizada , Humanos , Feminino , Masculino , Adulto , Epilepsia Generalizada/terapia , Estudos Retrospectivos , Adulto Jovem , Adolescente , Epilepsia Resistente a Medicamentos/terapia , Resultado do Tratamento , Pessoa de Meia-Idade , Núcleos Intralaminares do Tálamo , Convulsões/terapia , Convulsões/cirurgia , Estimulação Encefálica Profunda/métodos , Epilepsia Tônico-Clônica/terapia , Epilepsias Parciais/terapia , Criança
15.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023775

RESUMO

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Assuntos
Plantas , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal
16.
Epilepsy Res ; 205: 107407, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996686

RESUMO

Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Tálamo , Humanos , Estimulação Encefálica Profunda/métodos , Criança , Tálamo/fisiologia , Adulto , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia/terapia , Epilepsia/fisiopatologia
17.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790652

RESUMO

Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.

19.
Brain Commun ; 6(3): fcae161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764777

RESUMO

This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.

20.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806834

RESUMO

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Assuntos
Secas , Peróxido de Hidrogênio , Óxido Nítrico , Nitroprussiato , Solanum lycopersicum , Nitroprussiato/farmacologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Nitrosação/efeitos dos fármacos , Clorofila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA