Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(1): 195-210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381110

RESUMO

PURPOSE: To develop self-navigated motion correction for 3D silent zero echo time (ZTE) based neuroimaging and characterize its performance for different types of head motion. METHODS: The proposed method termed MERLIN (Motion Estimation & Retrospective correction Leveraging Interleaved Navigators) achieves self-navigation by using interleaved 3D phyllotaxis k-space sampling. Low resolution navigator images are reconstructed continuously throughout the ZTE acquisition using a sliding window and co-registered in image space relative to a fixed reference position. Rigid body motion corrections are then applied retrospectively to the k-space trajectory and raw data and reconstructed into a final, high-resolution ZTE image. RESULTS: MERLIN demonstrated successful and consistent motion correction for magnetization prepared ZTE images for a range of different instructed motion paradigms. The acoustic noise response of the self-navigated phyllotaxis trajectory was found to be only slightly above ambient noise levels (<4 dBA). CONCLUSION: Silent ZTE imaging combined with MERLIN addresses two major challenges intrinsic to MRI (i.e., subject motion and acoustic noise) in a synergistic and integrated manner without increase in scan time and thereby forms a versatile and powerful framework for clinical and research MR neuroimaging applications.


Assuntos
Imageamento por Ressonância Magnética , Neurofibromina 2 , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neuroimagem , Estudos Retrospectivos
2.
Wellcome Open Res ; 5: 74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832700

RESUMO

Background: Inhomogeneous Magnetization Transfer (ihMT) is an emerging, uniquely myelin-specific magnetic resonance imaging (MRI) contrast. Current ihMT acquisitions utilise fast Gradient Echo sequences which are among the most acoustically noisy MRI sequences, reducing patient comfort during acquisition. We sought to address this by modifying a near silent MRI sequence to include ihMT contrast. Methods: A Magnetization Transfer preparation module was incorporated into a radial Zero Echo-Time sequence. Repeatability of the ihMT ratio and inverse ihMT ratio were assessed in a cohort of healthy subjects. We also investigated how head orientation affects ihMT across subjects, as a previous study in a single subject suggests this as a potential confound. Results: We demonstrated that ihMT ratios comparable to existing, acoustically loud, implementations could be obtained with the silent sequence. We observed a small but significant effect of head orientation on inverse ihMTR. Conclusions: Silent ihMT imaging is a comparable alternative to conventional, noisy, alternatives. For all future ihMT studies we recommend careful positioning of the subject within the scanner.

3.
J Magn Reson Imaging ; 52(3): 739-751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32073206

RESUMO

BACKGROUND: Conventional T2 *-weighted functional magnetic resonance imaging (fMRI) is performed with echo-planar imaging (EPI) sequences that create substantial acoustic noise. The loud acoustic noise not only affects the activation of the auditory cortex, but may also interfere with resting state and task fMRI experiments. PURPOSE: To demonstrate the feasibility of a novel, quiet, T2 *, whole-brain blood oxygenation level-dependent (BOLD)-fMRI method, termed Looping Star, compared to conventional multislice gradient-echo EPI. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Glover stability QA phantom; 10 healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T: gradient echo (GE)-EPI and T2 * Looping Star fMRI. ASSESSMENT: Looping Star fMRI was presented and compared to GE-EPI with a working memory (WM) task and resting state (RS) experiments. Temporal stability and acoustic measurements were obtained for both methods. Functional maps and activation accuracy were compared to evaluate the performance of the novel sequence. STATISTICAL TESTS: Mean and standard deviation values were analyzed for temporal stability and acoustic noise tests. Activation maps were assessed with one-sample t-tests and contrast estimates (CE). Paired t-tests and receiver operator characteristic (ROC) were used to compare fMRI sensitivity and performance. RESULTS: Looping Star presented a 98% reduction in sound pressure compared with GE-EPI, with stable temporal stability (0.09% percent fluctuation), but reduced temporal signal-to-noise ratio (tSNR) (mean difference = 15.9%). The novel method yielded consistent activations for RS and WM (83.4% and 69.5% relative BOLD sensitivity), which increased with task difficulty (mean CE 2-back = 0.56 vs. 0-back = 0.08, P < 0.05). A few differences in spatial activations were found between sequences, leading to a 4-8% lower activation accuracy with Looping Star. DATA CONCLUSION: Looping Star provides a suitable approach for whole-brain coverage with sufficient spatiotemporal resolution and BOLD sensitivity, with only 0.5 dB above ambient noise. From the comparison with GE-EPI, further developments of Looping Star fMRI should target increased sensitivity and spatial specificity for both RS and task experiments. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:739-751.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição , Humanos , Estudos Prospectivos
4.
Magn Reson Med ; 81(1): 57-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30106186

RESUMO

PURPOSE: To introduce a novel MR pulse sequence, termed Looping Star, for fast, robust, and yet quiet, 3D radial multi-gradient echo T2* MR imaging. METHODS: The Looping Star pulse sequence is based on the 3D radial Rotating Ultra-Fast Imaging Sequence (RUFIS) extended by a time-multiplexed gradient-refocusing mechanism. First, multiple magnetic coherences are excited, which are subsequently gradient-refocused in form of a looping k-space trajectory. Accordingly, Looping Star captures an initial FID image followed by gradient echo images at equidistant echo times. RESULTS: Looping Star was demonstrated in phantom and in vivo volunteer experiments for 3D, high resolution T2* weighted imaging, T2* mapping, and quantitative susceptibility mapping (QSM). The method is fast, quiet, and robust against imperfections including Eddy currents, motion, and geometric distortions. When applied to a motor task fMRI experiment a BOLD sensitivity of 5% was achieved at minimal acoustic noise (i.e. 2.7 dB(A) above ambient noise) and with images congruent to other anatomical scans. CONCLUSIONS: Looping Star imaging provides new and exciting opportunities for fast, robust and yet quiet T2* MR imaging. Potential applications include T2*-weighted imaging, T2* mapping, QSM, and fMRI.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Acústica , Algoritmos , Calibragem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 80(4): 1440-1451, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29457287

RESUMO

PURPOSE: To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP). METHODS: Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements. Fixed Hounsfield replacement values were assigned for air (-1000 HU) and soft-tissue (+42 HU), whereas continuous linear mapping was used for bone. RESULTS: The obtained ZTE-derived pseudo-CT images accurately resembled the true CT images (i.e., Dice coefficient for bone overlap of 0.73 ± 0.08 and mean absolute error of 123 ± 25 HU evaluated over the whole head, including errors from residual registration mismatches in the neck and mouth regions). The linear bone mapping accounted for bone density variations. Averaged across five patients, ZTE-based AC demonstrated a PET error of -0.04 ± 1.68% relative to CT-based AC. Similarly, for RTP assessed in eight patients, the absolute dose difference over the target volume was found to be 0.23 ± 0.42%. CONCLUSION: The described method enables MR to pseudo-CT image conversion for the head in an accurate, robust, and fast manner without relying on anatomical prior knowledge. Potential applications include PET/MR-AC, and MR-guided RTP.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Imagens de Fantasmas
6.
Magn Reson Med ; 75(1): 107-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25639956

RESUMO

PURPOSE: To investigate proton density (PD)-weighted zero TE (ZT) imaging for morphological depiction and segmentation of cranial bone structures. METHODS: A rotating ultra-fast imaging sequence (RUFIS) type ZT pulse sequence was developed and optimized for 1) efficient capture of short T2 bone signals and 2) flat PD response for soft-tissues. An inverse logarithmic image scaling (i.e., -log(image)) was used to highlight bone and differentiate it from surrounding soft-tissue and air. Furthermore, a histogram-based bias-correction method was developed for subsequent threshold-based air, soft-tissue, and bone segmentation. RESULTS: PD-weighted ZT imaging in combination with an inverse logarithmic scaling was found to provide excellent depiction of cranial bone structures. In combination with bias correction, also excellent segmentation results were achieved. A two-dimensional histogram analysis demonstrates a strong, approximately linear correlation between inverse log-scaled ZT and low-dose CT for Hounsfield units (HU) between -300 HU and 1,500 HU (corresponding to soft-tissue and bone). CONCLUSIONS: PD-weighted ZT imaging provides robust and efficient depiction of bone structures in the head, with an excellent contrast between air, soft-tissue, and bone. Besides structural bone imaging, the presented method is expected to be of relevance for attenuation correction in positron emission tomography (PET)/MR and MR-based radiation therapy planning.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Crânio/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Magn Reson Med ; 75(4): 1402-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25962633

RESUMO

PURPOSE: To develop and evaluate a novel MR method that addresses some of the most eminent technical challenges of current BOLD-based fMRI in terms of 1) acoustic noise and 2) geometric distortions and signal dropouts. METHODS: A BOLD-sensitive fMRI pulse sequence was designed that first generates T2-weighted magnetization (using a T2 preparation module) and subsequently undergoes three-dimensional (3D) radial encoding using a rotating ultrafast imaging sequence (RUFIS). The method was tested on healthy volunteers at 3T with motor, visual, and auditory tasks, and compared relative to standard gradient and spin echo planar imaging (EPI) methods. RESULTS: In combination with parallel imaging the method achieves efficient and robust 3D whole brain coverage (3 mm isotropic resolution in 2.65 s scan time). Compared with standard EPI-based fMRI, the method demonstrated 1) T2-weighted imaging clean of geometrical distortions and signal dropout, 2) an acoustic noise reduction of ∼40 dB(A), and 3) a consistent BOLD response that is less sensitive (∼1.3% BOLD change) but spatially more specific. CONCLUSION: T2-prepared RUFIS provides quiet and distortion-free whole brain BOLD fMRI with minimal demands on the gradient performance. In particular, auditory fMRI and/or studies involving brain regions near air-tissue interfaces are expected to greatly benefit from the proposed method, especially if performed at ultrahigh field strengths.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA