Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 224: 116238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677442

RESUMO

INSL5 and relaxin-3 are relaxin family peptides with important roles in gut and brain function, respectively. They mediate their actions through the class A GPCRs RXFP4 and RXFP3. RXFP4 has been proposed to be a therapeutic target for colon motility disorders whereas RXFP3 targeting could be effective for neurological conditions such as anxiety. Validation of these targets has been limited by the lack of specific ligands and the availability of robust ligand-binding assays for their development. In this study, we have utilized NanoBiT complementation to develop a SmBiT-conjugated tracer for use with LgBiT-fused RXFP3 and RXFP4. The low affinity between LgBiT:SmBiT should result in a low non-specific luminescence signal and enable the quantification of binding without the tedious separation of non-bound ligands. We used solid-phase peptide synthesis to produce a SmBiT-labelled RXFP3/4 agonist, R3/I5, where SmBiT was conjugated to the B-chain N-terminus via a PEG12 linker. Both SmBiT-R3/I5 and R3/I5 were synthesized and purified in high purity and yield. Stable HEK293T cell lines expressing LgBiT-RXFP3 and LgBiT-RXFP4 were produced and demonstrated normal signaling in response to the synthetic R3/I5 peptide. Binding was first characterized in whole-cell binding kinetic assays validating that the SmBiT-R3/I5 bound to both cell lines with nanomolar affinity with minimal non-specific binding without bound and free SmBiT-R3/I5 separation. We then optimized membrane binding assays, demonstrating easy and robust analysis of both saturation and competition binding from frozen membranes. These assays therefore provide an appropriate rigorous binding assay for the high-throughput analysis of RXFP3 and RXFP4 ligands.


Assuntos
Proteínas , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Relaxina , Relaxina/metabolismo , Relaxina/química , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Células HEK293 , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Proteínas/metabolismo , Proteínas/química , Insulina/metabolismo , Ligação Proteica/fisiologia , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos
2.
Biochem Pharmacol ; 224: 116239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679208

RESUMO

Human insulin-like peptide 5 (INSL5) is a gut hormone produced by colonic L-cells, and its biological functions are mediated by Relaxin Family Peptide Receptor 4 (RXFP4). Our preliminary data indicated that RXFP4 agonists are potential drug leads for the treatment of constipation. More recently, we designed and developed a novel RXFP4 antagonist, A13-nR that was shown to block agonist-induced activity in cells and animal models. We showed that A13-nR was able to block agonist-induced increases in colon motility in mice of both genders that express the receptor, RXFP4. Our data also showed that colorectal propulsion induced by intracolonic administration of short-chain fatty acids was antagonized by A13-nR. Therefore, A13-nR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrhea. However, A13-nR acted as a partial agonist at high concentrations in vitro and demonstrated modest antagonist potency (∼35 nM). Consequently, the primary objective of this study is to pinpoint novel modifications to A13-nR that eliminate partial agonist effects while preserving or augmenting antagonist potency. In this work, we detail the creation of a series of A13-nR-modified analogues, among which analogues 3, 4, and 6 demonstrated significantly improved RXFP4 affinity (∼3 nM) with reduced partial agonist activity, enhanced antagonist potency (∼10 nM) and maximum agonist inhibition (∼80 %) when compared with A13-nR. These compounds have potential as candidates for further preclinical evaluations, marking a significant stride toward innovative therapeutics for colon motility disorders.


Assuntos
Insulina , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Humanos , Camundongos , Masculino , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/antagonistas & inibidores , Receptores de Peptídeos/agonistas , Insulina/metabolismo , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Células HEK293 , Camundongos Endogâmicos C57BL , Proteínas
3.
Biosci Rep ; 43(4)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36947541

RESUMO

RXFP4 is a G protein-coupled receptor (GPCR) in the relaxin family. It has recently been recognised that this receptor and its cognate ligand INSL5 may have a role in the regulation of food intake, gut motility, and other functions relevant to metabolic health and disease. Recent data from reporter-mice showed co-location of Rxfp4 and serotonin (5-HT) in the lower gut. We used human single-cell RNA sequence data (scRNASeq) to show that RXFP4 is in a subset of gut enterochromaffin cells that produce 5-HT in humans. We also used RNAScope to show co-location of Rxfp4 mRNA and 5-HT in mouse colon, confirming prior findings. To understand whether RXFP4 might regulate serotonin production, we developed a cell model using Colo320, a human gut-derived immortalised cell line that produces and releases serotonin. Overexpression of RXFP4 in these cells resulted in a constitutive decrease in cAMP levels in both the basal state and in cells treated with forskolin. Treatment of cells with two RXFP4 agonists, INSL5 derived peptide INSL5-A13 and small molecule compound-4, further reduced cAMP levels. This was paralleled by a reduction in expression of mRNA for TPH1, the enzyme controlling the rate limiting step in the production of serotonin. Overexpression of RXFP4 also attenuated the cAMP-induced release of serotonin from Colo320 cells. Together this demonstrates that serotonin producing enterochromaffin cells are the major site of RXFP4 expression in the gut and that RXFP4 can have inhibitory functional impacts on cAMP production as well as TPH1 expression and serotonin release.


Assuntos
Células Enterocromafins , Receptores Acoplados a Proteínas G , Serotonina , Animais , Humanos , Camundongos , Células Enterocromafins/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , RNA Mensageiro/genética , Serotonina/metabolismo
4.
Mol Metab ; 66: 101604, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184065

RESUMO

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Assuntos
Ingestão de Alimentos , Neurônios , Receptores Acoplados a Proteínas G , Animais , Camundongos , Hipotálamo/citologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J Mol Endocrinol ; 69(1): R45-R62, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35521762

RESUMO

There is no common consensus on the physiological role of insulin-like peptide 5 (INSL5) and its cognate receptor, relaxin family peptide receptor 4 (RXFP4). The experimental data for INSL5-RXFP4 expression and function point to a potential role of the peptide hormone and receptor pair in linking energy availability, homeostasis, and inflammation. In this review, we summarize studies on the INSL5-RXFP4 system and propose that the current findings from diverse experimental settings point broadly to a role as a protective energy sensor (PES). Specifically, we review the evidence that (1) INSL5-RXFP4 could regulate immune response by decreasing the production of proinflammatory cytokines and may be involved in the stress response via the HPA axis; (2) INSL5-RXFP4 may signal through sensory neurons on the vagus nerve, transmitting signals to the CNS; and (3) INSL5-RXFP4 could have local autocrine/paracrine roles within the intestinal tract and immune cells. Further investigation and clarification of these proposed roles of INSL5-RXFP4 may prove a greater physiological relevance for the pair and add to existing evidence of INSL5-RXFP4 role as a PES.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Sistema Hipotálamo-Hipofisário/metabolismo , Insulina/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Transdução de Sinais
6.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946593

RESUMO

Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is therefore implicated as a potential target for treatment of various central nervous system diseases. Since selective agonists of RXFP3 are restricted to relaxin-3 and its analogs, we conducted a high-throughput screening campaign against 32,021 synthetic and natural product-derived compounds using a cyclic adenosine monophosphate (cAMP) measurement-based method. Only one compound, WNN0109-C011, was identified following primary screening, secondary screening and dose-response studies. Although displayed agonistic effect in cells overexpressing the human RXFP3, it also showed cross-reactivity with the human RXFP4. This hit compound may provide not only a chemical probe to investigate the function of RXFP3/4, but also a novel scaffold for the development of RXFP3/4 agonists.


Assuntos
Ensaios de Triagem em Larga Escala , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química
7.
Acta Pharmacol Sin ; 41(10): 1328-1336, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32235863

RESUMO

Relaxin/insulin-like family peptide receptor 4 (RXFP4) is a class A G protein-coupled receptor (GPCR), and insulin-like peptide 5 (INSL5) is its endogenous ligand. Although the precise physiological role of INSL5/RXFP4 remains elusive, a number of studies have suggested it to be a potential therapeutic target for obesity and other metabolic disorders. Since selective agonists of RXFP4 are scarcely available and peptidic analogs of INSL5 are hard to make, we conducted a high-throughput screening campaign against 52,000 synthetic and natural compounds targeting RXFP4. Of the 109 initial hits discovered, only 3 compounds were confirmed in secondary screening, with JK0621-D008 displaying the best agonism at human RXFP4. Its S-configuration stereoisomer (JK1) was subsequently isolated and validated by a series of bioassays, demonstrating a consistent agonistic effect in cells overexpressing RXFP4. This scaffold may provide a valuable tool to further explore the biological functions of RXFP4.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células CHO , Cricetulus , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Bibliotecas de Moléculas Pequenas/toxicidade
8.
Neurogastroenterol Motil ; 32(5): e13796, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31989750

RESUMO

BACKGROUND: Insulin-like peptide 5 (INSL5) is a hormone stored in colonic enteroendocrine cells that also contain the unrelated hormones, GLP-1 and PYY. It acts at the relaxin family peptide 4, RXFP4, receptor. RXFP4 is expressed by enteric neurons in the colon, and it has been speculated that INSL5, through its action on enteric neurons, might be involved in the control of colonic contractions. Similar to insulin and relaxin, INSL5 consists of A and B peptide chains linked by three disulfide bonds, two between the chains and one intrinsic to the A chain. Because of its complex structure, it is difficult to synthesize and to prepare peptide analogues to investigate its roles. We have recently developed a potent simplified peptide analogue, INSL5-A13 (INSL5 analogue 13). METHODS: In the present work, we have investigated the actions of INSL5-A13 in mice. We investigated the ability of INSL5-A13 to increase the speed of emptying of a bead from the colon, after expulsion had been slowed by the peripherally restricted opioid agonist, loperamide (1 mg/kg). KEY RESULTS: INSL5-A13 was a full agonist at the mouse RXFP4 expressed in HEK cells, with an EC50 of ~9 nmol/L. INSL5-A13 caused an acceleration of colorectal bead propulsion in mice constipated by loperamide in the dose range 0.2 to 60 µg/kg, with an EC50 of ~6 µg/kg in vivo. It also accelerated bead propulsion in untreated mice. Bead expulsion was not accelerated in RXFP4-/- mice. CONCLUSION AND INFERENCES: Our data suggest that RXFP4 agonists could be useful in the treatment of constipation.


Assuntos
Colo/efeitos dos fármacos , Colo/fisiologia , Constipação Intestinal/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Hormônios Peptídicos/química , Receptores Acoplados a Proteínas G/agonistas , Animais , Antidiarreicos/administração & dosagem , Constipação Intestinal/induzido quimicamente , Motilidade Gastrointestinal/fisiologia , Células HEK293 , Humanos , Loperamida/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL
9.
Bioorg Med Chem Lett ; 29(8): 991-994, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30824200

RESUMO

The relaxin family peptide receptors have been implicated in numerous physiological processes including energy homeostasis, cardiac function, wound healing, and reproductive function. Two family members, RXFP3 and RXFP4, are class A GPCRs with endogenous peptide ligands (relaxin-3 and insulin-like peptide 5 (INSL5), respectively). Polymorphisms in relaxin-3 and RXFP3 have been associated with obesity, diabetes, and hypercholesterolemia. Moreover, central administration of relaxin-3 in rats has been shown to increase food intake, leading to body weight gain. Reported RXFP3 and RXFP4 ligands have been restricted to peptides (both endogenous and synthetic) as well as a low molecular weight positive allosteric modulator requiring a non-endogenous orthosteric ligand. Described here is the discovery of the first potent low molecular weight dual agonists of RXFP3/4. The scaffold identified is competitive with a chimeric relaxin-3/INSL5 peptide for RXFP3 binding, elicits similar downstream signaling as relaxin-3, and increases food intake in rats following acute central administration. This is the first report of small molecule RXFP3/4 agonism.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequenas/química , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Descoberta de Drogas , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
10.
J Mol Endocrinol ; 60(3): 213-224, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29535183

RESUMO

Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and in situ hybridisation that Insl5 mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract. We show that the human enteroendocrine L-cell model NCI-H716 cell line, and goblet-like colorectal cell lines SW1463 and LS513 endogenously express RXFP4. Stimulation of NCI-H716 cells with INSL5 produced phosphorylation of ERK1/2 (Thr202/Tyr204), AKT (Thr308 and Ser473) and S6RP (Ser235/236) and inhibited cAMP production but did not stimulate Ca2+ release. Acute INSL5 treatment had no effect on GLP-1 secretion mediated by carbachol or insulin, but modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-H716 cells. However, chronic INSL5 pre-treatment (18 h) increased basal GLP-1 secretion and prevented the inhibitory effect of acute INSL5 administration. LS513 cells were found to be unresponsive to INSL5 despite expressing RXFP4 Another enteroendocrine L-cell model, mouse GLUTag cells did not express detectable levels of Rxfp4 and were unresponsive to INSL5. This study provides novel insights into possible autocrine/paracrine roles of INSL5 in the intestinal tract.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Colo/metabolismo , AMP Cíclico/biossíntese , Perfilação da Expressão Gênica , Células Caliciformes/metabolismo , Humanos , Insulina/genética , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
11.
Reprod Biol ; 17(4): 327-332, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986276

RESUMO

Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily peptide that interacts with the relaxin family peptide receptor 4 (RXFP4). Numerous recent studies have focused on the functional effects of INSL5 on fat and glucose metabolism. Although there is no evidence that the human sperm may be a candidate target of INSL5, it has been detected in mice testis and sperm. Therefore, the present study sought to analyze the localization and expression of RXFP4 on human sperm and determine the efficiency of INSL5 in human sperm. Normal semen samples were incubated in different doses and exposure time periods of INSL5. We analyzed sperm motility by computer-assisted sperm analysis (CASA) and ROS levels by flow cytometry using the MitoSOX™ Red probe. Localization and expression of RXFP4 were assayed by immunofluorescence and RT-PCR, respectively. The results confirmed the presence of RXFP4 in human spermatozoa, which localized in the neck and midpiece of sperm. Nested PCR showed the expression of RXFP4 in human sperm. INSL5 could attenuate generation of mitochondrial ROS at the 1, 10, 30, and 100nmol/L doses. This result was particularly noted in the 30nmol/L treated samples after 4h incubation. Total motility of sperm was significantly preserved in the 100nmol/L after 2h and in 30nmol/L after 4h incubation period. This study, for the first time, clarified the expression and localization of RXFP4 on human sperm and revealed the role of INSL5 in sperm motility and mitochondrial ROS generation in a dose-dependent manner.


Assuntos
Insulina/farmacologia , Proteínas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos
12.
Arch Biochem Biophys ; 619: 27-34, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274616

RESUMO

Insulin-like peptide 5 (INSL5) is a gut peptide hormone belonging to the insulin/relaxin superfamily. It is implicated in the regulation of food intake and glucose homeostasis by activating relaxin family peptide receptor 4 (RXFP4). Previous studies have suggested that the B-chain is important for INSL5 activity against RXFP4. However, functionalities of the B-chain residues have not yet been systematically studied. In the present work, we conducted alanine-scanning mutagenesis of the B-chain residues of human INSL5 to obtain an overview of their contributions. Binding and activation assays of these INSL5 mutants with human RXFP4 identified two essential exposed B-chain C-terminal residues (B23Arg and B24Trp) and one important exposed central B-chain residue (B16Ile). These three determinant residues together with the C-terminal carboxylate moiety probably constitute a central receptor-binding patch that forms critical hydrophobic and electrostatic interactions with RXFP4 during INSL5 binding. Some other exposed residues, including B10Glu, B12Ile, B13Arg, B17Tyr, B21Ser, and B22Ser, made minor contributions to INSL5 function. These auxiliary residues are scattered around the edge of the central receptor-binding patch, and thus form a peripheral receptor-binding patch on the surface of INSL5. Our present work provides new insights into the interaction mechanism of INSL5 with its receptor RXFP4.


Assuntos
Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Alanina/química , Motivos de Aminoácidos , Dicroísmo Circular , Glucose/metabolismo , Homeostase , Humanos , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica
13.
Arch Biochem Biophys ; 558: 127-32, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25043977

RESUMO

Insulin-like peptide 5 (INSL5) is an insulin/relaxin superfamily peptide involved in the regulation of glucose homeostasis by activating its receptor RXFP4, which can also be activated by relaxin-3 in vitro. To determine the interaction mechanism of INSL5 with its receptor RXFP4, we studied their electrostatic interactions using a charge-exchange mutagenesis approach. First, we identified three negatively charged extracellular residues (Glu100, Asp104 and Glu182) in human RXFP4 that were important for receptor activation by wild-type INSL5. Second, we demonstrated that two positively charged B-chain Arg residues (B13Arg and B23Arg) in human INSL5 were involved in receptor binding and activation. Third, we proposed probable electrostatic interactions between INSL5 and RXFP4: the B-chain central B13Arg of INSL5 interacts with both Asp104 and Glu182 of RXFP4, meanwhile the B-chain C-terminal B23Arg of INSL5 interacts with both Glu100 and Asp104 of RXFP4. The present electrostatic interactions between INSL5 and RXFP4 were similar to our previously identified interactions between relaxin-3 and RXFP4, but had subtle differences that might be caused by the different B-chain C-terminal conformations of relaxin-3 and INSL5 because a dipeptide exchange at the B-chain C-terminus significantly decreased the activity of INSL5 and relaxin-3 to receptor RXFP4.


Assuntos
Insulina/química , Insulina/metabolismo , Proteínas/química , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Insulina/genética , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Proteínas/genética , Relaxina/química , Relaxina/metabolismo , Eletricidade Estática
14.
FEBS J ; 281(13): 2927-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24802387

RESUMO

Relaxin-3 (also known as insulin-like peptide 7) is an insulin/relaxin-superfamily peptide hormone that can bind and activate three relaxin-family peptide receptors: RXFP3, RXFP4, and RXFP1. Recently, we identified key electrostatic interactions between relaxin-3 and its cognate receptor RXFP3 by using a charge-exchange mutagenesis approach. In the present study, the electrostatic interactions between relaxin-3 and RXFP4 were investigated with the same approach. Mutagenesis of the negatively charged extracellular residues of human RXFP4 identified a conserved EXXXD(100-104) motif that is essential for RXFP4 activation by relaxin-3. Mutagenesis of the conserved positively charged Arg residues of relaxin-3 demonstrated that B12Arg, B16Arg and B26Arg were all involved in the binding and activation of RXFP4, especially B26Arg. The activity complementation between the mutant ligands and the mutant receptors suggested two probable electrostatic interaction pairs: Glu100 of RXFP4 versus B26Arg of relaxin-3, and Asp104 of RXFP4 versus both B12Arg and B16Arg of relaxin-3. For interaction with the essential EXXXD motifs of both RXFP3 and RXFP4, a folding-back conformation of the relaxin-3 B-chain C-terminus seems to be critical, because it brings B26Arg sufficiently close to B12Arg and B16Arg. To test this hypothesis, we replaced the conserved B23Gly-B24Gly dipeptide of relaxin-3 with an Ala-Ser dipeptide that occupied the corresponding position of insulin-like peptide 5 and resulted in an extended helical conformation. The mutant relaxin-3 showed a significant decrease in receptor-activation potency towards both RXFP3 and RXFP4, suggesting that a folding-back conformation of the B-chain C-terminus was important for relaxin-3 to efficiently interact with the EXXXD motifs of both receptors.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química , Relaxina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Ligação Competitiva , Sequência Conservada , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Relaxina/genética , Relaxina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA