RESUMO
The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.
Assuntos
Compostos de Boro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Animais , Compostos de Boro/química , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Albuminas/química , Albuminas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismoRESUMO
Accurate and early detection of atherosclerosis (AS) is imperative for their effective treatment. However, fluorescence probes for efficient diagnosis of AS often encounter insufficient deep tissue penetration, which hinders the reliable assessment of plaque vulnerability. In this work, a reactive oxygen species (ROS) activated near-infrared (NIR) fluorescence and photoacoustic (FL/PA) dual model probe TPA-QO-B is developed by conjugating two chromophores (TPA-QI and O-OH) and ROS-specific group phenylboronic acid ester. The incorporation of ROS-specific group not only induces blue shift in absorbance, but also inhibits the ICT process of TPA-QO-OH, resulting an ignorable initial FL/PA signal. ROS triggers the convertion of TPA-QO-B to TPA-QO-OH, resulting in the concurrent amplification of FL/PA signal. The exceptional selectivity of TPA-QO-B towards ROS makes it effectively distinguish AS mice from the healthy. The NIR emission can achieve a tissue penetration imaging depth of 0.3 cm. Moreover, its PA775 signal possesses the capability to penetrate tissues up to a thickness of 0.8 cm, ensuring deep in vivo imaging of AS model mice in early stage. The ROS-triggered FL/PA dual signal amplification strategy improves the accuracy and addresses the deep tissue penetration problem simultaneously, providing a promising tool for in vivo tracking biomarkers in life science and preclinical applications.
Assuntos
Corantes Fluorescentes , Técnicas Fotoacústicas , Placa Aterosclerótica , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Técnicas Fotoacústicas/métodos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Corantes Fluorescentes/química , Camundongos , Imagem Óptica/métodos , Camundongos Endogâmicos C57BL , Humanos , MasculinoRESUMO
Fine particulate matter (PM2.5) is associated with numerous adverse health effects, including pulmonary and cardiovascular diseases and premature death. Significant contributors to ambient PM2.5 include combustion particles and secondary organic aerosols (SOA). Combustion particles enter the atmosphere and undergo an aging process that changes their shape and composition, but there is limited study on the health effects of combustion particle aging and interactions with SOA. This study aimed to understand how biological responses to combustion particles would be affected by atmospheric aging and interaction with anthropogenic SOA. Fresh combustion particles underwent photochemical aging in a potential aerosol mass (PAM) oxidation flow reactor and interacted with SOA produced by the oxidation of toluene vapor in the PAM reactor. Photochemical aging and SOA interactions lead to significant changes in the PAH content and oxidative potential of the particle. Photochemical aging and SOA interactions also affected the biological responses, such as the inflammatory response and CYP1A1 induction of the particles in monoculture and coculture cells. These findings highlight the significance of photochemical aging and SOA interactions on the composition and cellular responses of combustion particles.
RESUMO
The clinical translation of the anticancer drug ß-lapachone (LAP) has been limited by the narrow therapeutic window. Stimuli-responsive anticancer drug delivery systems have gained tremendous attention in recent years to alleviate adverse effects and enhance therapeutic efficacy. Here, we report a dual pH- and enzyme-responsive nanocarrier to address the above issue of LAP. In detail, the epigallocatechin gallate (EGCG) and ferric ions were employed to engineer nanoscale ferric ion-polyphenol complexes where LAP was physically encapsulated therein. The coordination bond between Fe3+ and the catechol moiety of EGCG was sensitive to the low pH, enabling the triggered cargo release in the acidic endosomes/lysosomes. Afterward, the released LAP was activated by the overexpressed NAD(P)H: quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1) in the tumor cells, followed by the generation of reactive oxygen species (ROS), and the induction of oxidative stress and apoptotic cell death. Meanwhile, EGCG could upregulate gasdermin E (GSDME), and ferric ions were involved in the Fenton reaction. Hence, EGCG and ferric ions could sensitize the toxicity of LAP through the induction of multiple cell death pathways (e.g., pyroptosis, ferroptosis, apoptosis, and necroptosis). The current work enlarged the LAP's therapeutic window via controlled cargo release and vehicle sensitization.
Assuntos
Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Espécies Reativas de Oxigênio/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Concentração de Íons de Hidrogênio , Nanomedicina , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacosRESUMO
The construction of semiconductor heterojunction is an effective way for charge separation in photocatalytic degradation of pollutants. In this study, a novel MoS2@MoO3/(Cu+/g-C3N4) ternary composites (MMCCN) was prepared via a simple calcination method. The as-prepared composites exhibited exceptional performance in activating peroxymonosulfate (PMS) for the degradation of rhodamine B (RhB). The activity testing results indicated that 99.41 % of RhB (10 mg·L-1, 10 mL) was effectively removed by the synergistic effect of composites photocatalyst (0.1 g·L-1) and PMS (0.1 g·L-1) under visible light irradiation for 40 min. Its reaction rate constant exceeded that of Cu+/g-C3N4, MoO3 and MoS2 by a factor of 3.56, 17.30 and 11.73 times, respectively. The crystal structure, band gap and density of states (DOS) of the semiconductors were calculated according to the density functional theory (DFT). Free radical trapping tests and electron spin resonance spectroscopy validated that 1O2, O2- and h+ are primary reactive species participating in the decomposition of RhB. The ternary composites demonstrated good stability and maintained excellent degradation efficiency even across four reaction cycles. Furthermore, the activation mechanism and the intermediates produced during the decomposition course of RhB by MMCCN/PMS/vis system were analyzed and elucidated. A double S-scheme heterojunctions was responsible for efficient separation of photo-induced electron-hole pairs. This work presents a novel method in the construction of double S-scheme heterojunctions for PMS activation which is expected to find wide applications in wastewater treatment and environmental remediation.
RESUMO
Iron-based chemodynamic therapy (CDT) exhibits commendable biocompatibility and selectivity, but its efficacy is constrained by the intracellular pH of tumors. To overcome this obstacle, we constructed a silica delivery platform loaded with autophagy-inducing reagents (rapamycin, RAPA) and iron-based Fenton reagents (Fe3O4). This platform was utilized to explore a novel strategy that leverages autophagy to decrease tumor acidity, consequently boosting the effectiveness of CDT. Both in vitro and in vivo experiments revealed that RAPA prompted the generation of acidic organelles (e.g., autophagic vacuoles and autophagosomes), effectively changing the intracellular pH in the tumor microenvironment. Furthermore, RAPA-induced tumor acidification significantly amplified the efficacy of Fe3O4-based Fenton reactions, consequently increasing the effectiveness of Fe3O4-based CDT. This innovative approach, which leverages the interplay between autophagy induction and iron-based CDT, shows promise in overcoming the limitations posed by tumor pH, thus offering a more efficient approach to tumor treatments.
Assuntos
Ferro , Concentração de Íons de Hidrogênio , Humanos , Animais , Ferro/química , Camundongos , Morte Celular Autofágica/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/química , Microambiente Tumoral/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Propriedades de Superfície , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Autofagia/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proliferação de Células/efeitos dos fármacosRESUMO
Osteomyelitis is an osseous infectious disease that primarily affects children and the elderly with high morbidity and recurrence. The conventional treatments of osteomyelitis contain long-term and high-dose systemic antibiotics with debridements, which are not effective and lead to antibiotic resistance with serious side/adverse effects in many cases. Hence, developing novel antibiotic-free interventions against osteomyelitis (especially antibiotic-resistant bacterial infection) is urgent and anticipated. Here, a bone mesenchymal stem cell membrane-constructed nanocell (CFE@CM) was fabricated against osteomyelitis with the characteristics of acid-responsiveness, hydrogen peroxide self-supplying, enhanced chemodynamic therapeutic efficacy, bone marrow targeting and cuproptosis induction. Notably, mRNA sequencing was applied to unveil the underlying biological mechanisms and found that the biological processes related to copper ion binding, oxidative phosphorylation, peptide biosynthesis and metabolism, etc., were disturbed by CFE@CM in bacteria. This work provided an innovative antibiotic-free strategy against osteomyelitis through copper-enhanced Fenton reaction and distinct cuproptosis, promising to complement the current insufficient therapeutic regimen in clinic.
Assuntos
Cobre , Osteomielite , Osteomielite/tratamento farmacológico , Animais , Cobre/química , Cobre/farmacologia , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Camundongos , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.
Assuntos
Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxigênio/química , Catálise , Manganês/química , Compostos Benzidrílicos/química , Nitrilas/química , Adsorção , Espécies Reativas de Oxigênio , Recuperação e Remediação Ambiental/métodos , Fenóis/químicaRESUMO
Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticles-CuMnO2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible-light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 can promote the redox reaction of CuMnO2, leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) were monitored to detect ROS levels. The H2O2 nanoprobe exhibited a linear response in the range of 0.314-10 µM with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.
Assuntos
Nanopartículas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Nanopartículas/química , Animais , Camundongos , Humanos , Raios Infravermelhos , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Elementos da Série dos Lantanídeos/química , Peróxido de Hidrogênio/análiseRESUMO
Ferroptosis initiation is often utilized for synergistic immunotherapy. While, current immunotherapy is limited by an immunosuppressive tumor microenvironment (TME), and ferroptosis is limited by insufficient reactive oxygen species (ROS) and ferroptotic lipids in tumor cells. Here, an arachidonic acid (AA) loaded nanosystem (CTFAP) is developed to mutually reinforce ferroptosis and cancer immunotherapy by augmenting ROS generation and modulating ferroptotic lipids. CTFAP is composed of acid-responsive core calcium peroxide (CaO2) nanoparticles, ferroptotic lipids sponsor AA, tetracarboxylic porphyrin (TCPP) and Fe3+ based metal-organic framework structure, and biocompatible mPEG-DSPE for improved stability. Once endocytosed by tumor cells, CTFAP can release oxygen (O2) and hydrogen peroxide (H2O2) in the acidic TME, facilitating TCPP-based sonodynamic therapy and Fe3+-mediated Fenton-like reactions to generate substantial ROS for cell ferroptosis initiation. The immunogenic cell death (ICD) after ferroptosis promotes interferon γ (IFN-γ) secretion to up-regulate the expression of long-chain family member 4 (ACSL4), cooperating with the released AA from CTFAP to accelerate the accumulation of lipid peroxidation (LPO) and thereby promoting ferroptosis in cancer cells.CTFAP with ultrasound treatment efficiently suppresses tumor growth, has great potential to challenges in cancer immunotherapy.
RESUMO
Ferroptosis, a regulated form of cell death characterized by excessive iron-dependent lipid peroxidation, can be readily induced in cultured cells by chemicals such as erastin and RSL3. Protein disulfide isomerase (PDI) has been identified as an upstream mediator of chemically induced ferroptosis and also a target for ferroptosis protection. In this study, we discovered that raloxifene (RAL), a selective estrogen receptor modulator known for its neuroprotective actions in humans, can effectively inhibit PDI function and provide robust protection against chemically induced ferroptosis in cultured HT22 neuronal cells. Specifically, RAL can bind directly to PDI both in vitro and in intact neuronal cells and inhibit its catalytic activity. Computational modeling analysis reveals that RAL can tightly bind to PDI through forming a hydrogen bond with its His256 residue, and biochemical analysis further shows that when PDI's His256 is mutated to Ala256, RAL loses its inhibition of PDI's catalytic activity. This inhibition of PDI by RAL significantly reduces the dimerization of both the inducible and neuronal nitric oxide synthases and the accumulation of nitric oxide, both of which have recently been shown to play a crucial role in mediating chemically induced ferroptosis through subsequent induction of ROS and lipid-ROS accumulation. In vivo behavioral analysis shows that mice treated with RAL are strongly protected against kainic acid-induced memory deficits and hippocampal neuronal damage. In conclusion, this study demonstrates that RAL is a potent inhibitor of PDI and can effectively prevent chemically induced ferroptosis in hippocampal neurons both in vitro and in vivo. These findings offer a novel estrogen receptor-independent mechanism for RAL's neuroprotective actions in animal models and humans.
RESUMO
Antimicrobial resistance (AMR) is a growing global health concern, necessitating innovative strategies beyond the development of new antibiotics. Here, we employed NdYVO4:Eu3+ nanoparticles, which can persistently produce reactive oxygen species (ROS) after stopping the light, as a model of photodynamic nanoparticles and demonstrated that the photodynamic effect can serve as an adjuvant with antibiotics to effectively reduce their minimum inhibitory concentration. These preirradiated nanoparticles could penetrate the bacterial cell membrane, significantly enhancing the potency of antibiotics. We showed that the synergy effect could be attributed to disrupting crucial cellular processes by ROS, including damaging cell membrane proteins, interfering with energy supply, and inhibiting antibiotic metabolism. Our findings suggested that complementing the photodynamic effect might be a robust strategy to enhance antibiotic potency, providing an alternative antibacterial treatment paradigm.
RESUMO
An oral colon-targeted drug delivery system holds great potential in preventing systemic toxicity and preserving the therapeutic benefits of ulcerative colitis (UC) treatment. In this study, we developed a negatively charged PLGA-PEG nanoparticle system for encapsulating naringin (Nar). Additionally, chitosan and mannose were coated on the surface of these nanoparticles to enhance their mucosal adsorption and macrophage targeting abilities. The resulting nanoparticles, termed MC@Nar-NPs, exhibited excellent resistance against decomposition in the strong acidic gastrointestinal environment and specifically accumulated at inflammatory sites. Upon payload release, MC@Nar-NPs demonstrated remarkable efficacy in alleviating colon inflammation as evidenced by reduced levels of pro-inflammatory cytokines in both blood and colon tissues, as well as the scavenging of reactive oxygen species (ROS) in the colon. This oral nanoparticle delivery system represents a novel approach to treating UC by utilizing Chinese herbal ingredient-based oral delivery and provides a theoretical foundation for local and precise intervention in specific UC treatment.
Assuntos
Colite Ulcerativa , Colo , Flavanonas , Nanopartículas , Polímeros , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/administração & dosagem , Flavanonas/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Animais , Nanopartículas/química , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Concentração de Íons de Hidrogênio , Administração Oral , Polímeros/química , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Citocinas/metabolismoRESUMO
BACKGROUND: Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM: To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS: Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80â for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS: Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION: The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
RESUMO
This study examined the phenol degradation capabilities and oxidative stress responses of Candida tropicalis SHC-03, demonstrating its metabolic superiority and resilience compared to Saccharomyces cerevisiae BY4742 in a culture medium with phenol as the sole carbon source. Through comparative growth, transcriptomic, and metabolomic analyses under different phenol concentrations, this study revealed C. tropicalis SHC-03's specialized adaptations for thriving in phenol as the sole carbon source environments. These include a strategic shift from carbohydrate metabolism to enhanced phenol degradation pathways, highlighted by the significant upregulation of genes for Phenol 2-monoxygenase and Catechol 1,2-dioxygenase. Despite phenol levels reaching 1.8 g/L, C. tropicalis exhibits a robust oxidative stress response, efficiently managing ROS through antioxidative pathways and the upregulation of genes for peroxisomal proteins like PEX2, PEX13, and PMP34. Concurrently, there was significant upregulation of genes associated with membrane components and transmembrane transporters, enhancing the cell's capacity for substance exchange and signal transduction. Especially, when the phenol concentration was 1.6 g/L and 1.8 g/L, the degradation rates of C. tropicalis towards it were 99.47 and 95.91%, respectively. Conversely, S. cerevisiae BY4742 shows limited metabolic response, with pronounced growth inhibition and lack of phenol degradation. Therefore, our study not only sheds light on the molecular mechanisms underpinning phenol tolerance and degradation in C. tropicalis but also positions this yeast as a promising candidate for environmental and industrial processes aimed at mitigating phenol pollution.
RESUMO
In this study, we aimed to examine the growth, physiological and biochemical status, and responses to salinity stress of bok choy (Brassica rapa subsp. chinensis) cultivated in a hydroponic system with a plasma-treated solution. Plasma gas generated using a cylindrical dielectric barrier discharge or air (control) was injected into Hoagland nutrient solution once a week for different durations (0, 5, and 10 min). After 4 weeks, the length of the shoots and roots, number of leaves, and dry weight of bok choy plants significantly increased in individuals grown with Hoagland solution treated with plasma gas for 10 min. An increase in dry weight of individual plants of approximately 80.5% was observed in plants in the plasma-treated group compared to those in a control group. The levels of chlorophyll, total soluble proteins, and nitrogen uptake, and transcription of genes related to salinity stress tolerance-WRKY2, HHP3, and ABI1- were also significantly elevated in bok choy grown with plasma treated Hoagland solution. Moreover, when exposed to 20 mM NaCl, plant length and leaf number were significantly increased, in the group grown with Hoagland solution treated with plasma gas for 10 min. Level of H2O2 was significantly elevated in the treated nutrient solutions. In plants grown with the treated nutrient solution, intracellular NO was highly detected in the cell division and elongation zone of roots. Our findings suggest that plasma treatment of nutrient solutions in hydroponic culture systems may improve the growth, physiological and biochemical status, and tolerance to salinity stress in plants, and a crucial role of H2O2 generated in the treated nutrient solutions may play in this improvement.
RESUMO
OBJECTIVE: Carcinogenic mechanisms of heavy metals/ trace elements (HMTE) in bladder cancer (BC) are exactly unknown. Mitochondrial dysfunction (MD), oxidative stress (OS), and mitogen-activated protein kinases (MAPK) are probable carcinogenic mechanisms. The purpose is to investigate probable carcinogenic pathways of HMTE in BC using six MD genes, seven OS markers, and p38-MAPK. METHODS: Study included 125 BC/radical cystectomy (RC) patients between October 2020 and October 2022, and 72 controls. Exclusion criteria included previous neoplasm, chemo- or radiotherapy. Two samples (cancer/noncancer) were taken from RC specimens. Tissues/plasma/urine cadmium (Cd), lead (Pb), cobalt (Co), nickel (Ni), strontium (Sr), aluminium (Al), zinc (Zn), boron (B) were measured by ICP-OES. Tissue MD genes (mt-CO3, mt-CYB, mt-ATP 6, mt-ATP8, mt-CO1, mt-ND1), and serum OS markers (8-OHdG, MDA, 3-NT, AGEs, AOPP, ROS, SOD2), p38-MAPK were assessed by RT-PCR, and ELISA, respectively. RESULTS: BC and adjacent tissue showed higher (Al, Co, Pb, Ni, Zn, Cd,Sr), lower B concentrations, compared to controls. High tissue concentrations (Cd, Co, Pb, Ni, Sr) were associated with higher MD genes, OS, MAPK and lower SOD2 levels. The same differences were greater in 41 patients with concomitant elevation of two or more HMTE. Noninclusion of BC-related oncogenes (e.g. RAS) is a limitation. CONCLUSIONS: Evidence suggests that high BC tissue (Cd, Co, Pb, Ni, Si) concentrations are associated with over-expressed MD genes, OS, p38-MAPK and low SOD2. These findings provide important understanding keys of probable carcinogenic pathways in BC associated with HMTE. So, efforts should be performed to minimize and counteract exposure to toxic HMTE.
RESUMO
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
RESUMO
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1ß (IL-1ß)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
RESUMO
The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.