Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Mol Biol ; 436(18): 168710, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009073

RESUMO

Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.


Assuntos
Pareamento Incorreto de Bases , DNA , Conformação de Ácido Nucleico , DNA/química , DNA/metabolismo , Modelos Moleculares , Adenina/química , Adenina/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Reparo do DNA , Humanos
2.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36586540

RESUMO

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Encefálicas/diagnóstico , Genótipo , Reparo de Erro de Pareamento de DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
3.
Cureus ; 15(12): e51084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283510

RESUMO

BACKGROUND: Falls in the elderly are common causes of morbidity, mortality, loss of independence, and poor quality of life. We hypothesized that decreased ankle position sense is one among several risk factors that might lead to falls. METHODS: A total of 54 feet from 28 patients over 65 years of age and 10 feet from five healthy volunteers were included. Measurements of ankle position sense, medical history, and fall history within a year were obtained, which were compared between the groups. RESULTS: The mean replication error angle of internal and external rotation was significantly higher in the elderly, and the mean replication error angle of internal rotation was significantly higher in the group with a history of falls. CONCLUSION: The mean replication error angle of internal rotation and a history of fractures were significant risk factors for falls. Hence, an increase in the mean replication error angle of internal rotation may increase the risk of falls in the elderly population.

4.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849888

RESUMO

Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.


Assuntos
Composição de Bases , DNA Mitocondrial/genética , Mutação , Estresse Oxidativo , Sequência Rica em At , Animais , Caenorhabditis elegans
5.
J Biomol NMR ; 74(8-9): 457-471, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789613

RESUMO

NMR off-resonance R1ρ relaxation dispersion measurements on base carbon and nitrogen nuclei have revealed that wobble G·T/U mismatches in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-abundance, and mutagenic Watson-Crick-like conformations. As Watson-Crick-like G·T mismatches have base pairing geometries similar to Watson-Crick base pairs, we hypothesized that they would mimic Watson-Crick base pairs with respect to the sugar-backbone conformation as well. Using off-resonance R1ρ measurements targeting the sugar C3' and C4' nuclei, a structure survey, and molecular dynamics simulations, we show that wobble G·T mismatches adopt sugar-backbone conformations that deviate from the canonical Watson-Crick conformation and that transitions toward tautomeric and anionic Watson-Crick-like G·T mismatches restore the canonical Watson-Crick sugar-backbone. These measurements also reveal kinetic isotope effects for tautomerization in D2O versus H2O, which provide experimental evidence in support of a transition state involving proton transfer. The results provide additional evidence in support of mutagenic Watson-Crick-like G·T mismatches, help rule out alternative inverted wobble conformations in the case of anionic G·T-, and also establish sugar carbons as new non-exchangeable probes of this exchange process.


Assuntos
Pareamento Incorreto de Bases , Carbono/química , DNA/química , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Açúcares/química , Pareamento de Bases , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Timina
6.
DNA Repair (Amst) ; 88: 102810, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036259

RESUMO

Small nucleotide insertion/deletion (indel) errors are one of the common replication errors in DNA synthesis. The most frequent occurrence of indel error was thought to be due to repeated sequences being prone to slippage during DNA replication. Proofreading and DNA mismatch repair are important factors in indel error correction to maintain the high fidelity of genetic information transactions. We employed a MALDI-TOF mass spectrometry (MS) analysis to measure the efficiency of Klenow polymerase (KF) proofreading of indel errors. Herein, a non-labeled and non-radio-isotopic oligonucleotide primer is annealed to a template DNA forming a single nucleotide indel error and was proofread by KF in the presence of a combination of different deoxyribonucleotide triphosphates and/or dideoxyribonucleotide triphosphates. The proofreading products were identified by the KF modified mass change of the primer. We examined proofreading of DNAs containing indel errors at various positions of the primer-template junction. We found that indel errors located 1-5-nucleotides (nt) from the primer terminus can be proofread efficiently, while insertion/deletions at 6-nt from the 3' end are partially corrected and extended. Indels located 7-9-nt from the primer terminus escape proofreading and are elongated by polymerase. The possible underlying mechanisms of these observations are discussed in the context of the polymerase and primer-template junction interactions via a structure analysis.


Assuntos
Replicação do DNA/genética , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sequência de Bases , Fenótipo
7.
Regul Toxicol Pharmacol ; 107: 104410, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31226390

RESUMO

Developmental toxicity studies for chemical and pharmaceutical safety are primarily performed in rats. Regulatory frameworks may require testing in a second, non-rodent species, for which the rabbit is usually chosen. This study shows that differences in NOAELs or LOAELs (N(L)OAELs) observed between rat and rabbit developmental toxicity studies performed according to OECD guidelines could just as well be caused by study replication errors, and not necessarily by differences in species sensitivity. This conclusion follows from an analysis of a database with rat and rabbit developmental toxicity studies for over 1000 industrial chemicals, pesticides, veterinary drugs and human pharmaceuticals, which included 143 compounds with multiple oral rat studies and 124 compounds with multiple oral rabbit studies. Our analysis confirms earlier findings that, on average over all compounds, rat and rabbit do not differ in sensitivity to developmental effects. There is substantial scatter in the correlation plots comparing rat and rabbit developmental N(L)OAELs, which is easily interpreted as species differences for individual compounds. However, for compounds tested twice in the same species, these N(L)OAELs may differ up to a factor of 25. Thus, potential interspecies differences in developmental N(L)OAEL will be overwhelmed by the reproducibility error, rendering the added value of a second species study questionable. As N(L)OAELs serve as point of departure (POD) for setting health-based guidance values in risk assessment, the large reproducibility error of N(L)OAELs should be taken into account by the introduction of an additional uncertainty factor. It is recommended to aim for reducing the reproducibility error by applying dose-response (BMD) analysis, optimize study designs and harmonize study protocols.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Animais , Feminino , Gravidez , Coelhos , Ratos , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da Espécie
8.
J Biomol Struct Dyn ; 36(7): 1649-1665, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28514900

RESUMO

This work is devoted to the careful QM/QTAIM analysis of the evolution of the basic physico-chemical parameters along the intrinsic reaction coordinate (IRC) of the biologically important 2AP·T(WC)↔2AP·T*(w) and 2AP·C*(WC)↔2AP·C(w) Watson-Crick(WC)↔wobble(w) tautomeric transformations obtained at each point of the IRC using original authors' methodology. Established profiles reflect the high similarity between the courses of these processes. Basing on the scrupulous analysis of the profiles of their geometric and electron-topological parameters, it was established that the dipole-active WC↔w tautomerizations of the Watson-Crick-like 2AP·T(WC)/2AP·C*(WC) mispairs, stabilized by the two classical N3H⋯N1, N2H⋯O2 and one weak C6H⋯O4/N4 H-bonds, into the wobble 2AP·T*(w)/2AP·C(w) base pairs, respectively, joined by the two classical N2H⋯N3 and O4/N4H⋯N1 H-bonds, proceed via the concerted stepwise mechanism through the sequential intrapair proton transfer and subsequent large-scale shifting of the bases relative each other, through the planar, highly stable, zwitterionic transition states stabilized by the participation of the four H-bonds - N1+H⋯O4-/N4-, N1+H⋯N3-, N2+H⋯N3-, and N2+H⋯O2-. Moreover, it was found out that the 2AP·T(WC)↔2AP·T*(w)/2AP·C*(WC)↔2AP·C(w) tautomerization reactions occur non-dissociatively and are accompanied by the consequent replacement of the 10 unique patterns of the specific intermolecular interactions along the IRC. Obtained data are of paramount importance in view of their possible application for the control and management of the proton transfer, e.g. by external electric or laser fields.


Assuntos
2-Aminopurina/química , Pareamento Incorreto de Bases/genética , DNA/química , Pirimidinas/química , Pareamento de Bases/genética , Prótons , Teoria Quântica
9.
DNA Repair (Amst) ; 61: 63-75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223016

RESUMO

Proofreading and DNA repair are important factors in maintaining the high fidelity of genetic information during DNA replication. Herein, we designed a non-labeled and non-radio-isotopic simple method to measure proofreading. An oligonucleotide primer is annealed to a template DNA forming a mismatched site and is proofread by Klenow fragment of Escherichia coli DNA polymerase I (pol I) in the presence of all four dideoxyribonucleotide triphosphates. The proofreading excision products and re-synthesis products of single nucleotide extension are subjected to MALDI-TOF mass spectrometry (MS). The proofreading at the mismatched site is identified by the mass change of the primer. We examined proofreading of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus can be proofread efficiently. Internal single mismatches can also be proofread at different efficiencies, with the best correction for mismatches located 2-4-nucleotides from the primer terminus. For mismatches located 5-nucleotides from the primer terminus there was partial correction and extension. No significant proofreading was observed for mismatches located 6-9-nucleotides from the primer terminus. We also subjected primers containing 3' penultimate deoxyinosine (dI) lesions, which mimic endonuclease V nicked repair intermediates, to pol I repair assay. The results showed that T-I was a better substrate than G-I and A-I, however C-I was refractory to repair. The high resolution of MS results clearly demonstrated that all the penultimate T-I, G-I and A-I substrates had been excised last 2 dI-containing nucleotides by pol I before adding a correct ddNMP, however, pol I proofreading exonuclease tolerated the penultimate C-I mismatch allowing the primer to be extended by polymerase activity.


Assuntos
Reparo do DNA , Replicação do DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , DNA Polimerase I/metabolismo , Moldes Genéticos
10.
J Neuromuscul Dis ; 3(2): 227-245, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854212

RESUMO

BACKGROUND: Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE: Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS: Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS: Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS: Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.


Assuntos
Variações do Número de Cópias de DNA/genética , Reparo do DNA por Junção de Extremidades , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Reparo de DNA por Recombinação , Hibridização Genômica Comparativa , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Humanos , Íntrons , Masculino , Deleção de Sequência
11.
Proc Natl Acad Sci U S A ; 113(39): E5765-74, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27630194

RESUMO

The replication of DNA is initiated at particular sites on the genome called replication origins (ROs). Understanding the constraints that regulate the distribution of ROs across different organisms is fundamental for quantifying the degree of replication errors and their downstream consequences. Using a simple probabilistic model, we generate a set of predictions on the extreme sensitivity of error rates to the distribution of ROs, and how this distribution must therefore be tuned for genomes of vastly different sizes. As genome size changes from megabases to gigabases, we predict that regularity of RO spacing is lost, that large gaps between ROs dominate error rates but are heavily constrained by the mean stalling distance of replication forks, and that, for genomes spanning ∼100 megabases to ∼10 gigabases, errors become increasingly inevitable but their number remains very small (three or less). Our theory predicts that the number of errors becomes significantly higher for genome sizes greater than ∼10 gigabases. We test these predictions against datasets in yeast, Arabidopsis, Drosophila, and human, and also through direct experimentation on two different human cell lines. Agreement of theoretical predictions with experiment and datasets is found in all cases, resulting in a picture of great simplicity, whereby the density and positioning of ROs explain the replication error rates for the entire range of eukaryotes for which data are available. The theory highlights three domains of error rates: negligible (yeast), tolerable (metazoan), and high (some plants), with the human genome at the extreme end of the middle domain.


Assuntos
Pareamento de Bases/genética , Replicação do DNA , Eucariotos/genética , Genoma Humano , Animais , Arabidopsis/genética , DNA/genética , Replicação do DNA/genética , Drosophila melanogaster/genética , Células HeLa , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Origem de Replicação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
12.
FEBS Lett ; 590(14): 2119-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27277546

RESUMO

In the past, it was widely thought that, although epigenetically different, the genome sequences of cells are basically the same in a single body. In retrospect, the genome-uniformity idea may have been naïve, considering that DNA polymerases cannot be perfect. Here, a systemic, not sporadic, genome change was demonstrated in a single plant (Arabidopsis) and animal (zebrafish) body using genome DNAs taken in an ordered manner using the genome profiling method. This can be explained because mutations accumulate additively in progeny cells, and these results are critically significant for developmental and oncological research.


Assuntos
Arabidopsis/genética , Genoma de Planta , Mutação , Peixe-Zebra/genética , Animais , Análise Mutacional de DNA/métodos , Humanos
13.
World J Gastroenterol ; 18(39): 5635-9, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23112559

RESUMO

We describe a patient with a Homo sapiens mutL homolog 1 (MLH1)-associated Lynch syndrome with previous diagnoses of two distinct primary cancers: a sigmoid colon cancer at the age of 39 years, and a right colon cancer at the age of 50 years. The mutation identified in his blood and buccal cells, c.1771delG, p.Asp591Ilefs*25, appears to be a de novo event, as it was not transmitted by either of his parents. This type of de novo event is rare in MLH1 as only three cases have been reported in the literature so far. Furthermore, the discordant results observed between replication error phenotyping and immunohistochemistry highlight the importance of the systematic use of both pre-screening tests in the molecular diagnosis of Lynch syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Mutação em Linhagem Germinativa , Proteínas Nucleares/genética , Adulto , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA