Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.513
Filtrar
1.
World J Gastrointest Oncol ; 16(9): 3980-3993, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39350997

RESUMO

BACKGROUND: Pancreatic cancer, a formidable gastrointestinal neoplasm, is characterized by its insidious onset, rapid progression, and resistance to treatment, which often lead to a grim prognosis. While the complex pathogenesis of pancreatic cancer is well recognized, recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts. However, their precise role in pancreatic cancer remains unknown. Resveratrol is a natural polyphenol known for its multifaceted biological actions, including antioxidative and neuroprotective properties, as well as its potential to inhibit tumor proliferation and migration. Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis. AIM: To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts. METHODS: Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression of α-SMA and p16. HP-1 expression was determined using immunohistochemistry. Cells were treated with the senescence-inducing factors known as 3CKs. Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate. Western blotting was conducted to assess the expression levels of p16 and p21. Immunofluorescence was performed to assess LaminB1 expression. Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors, including IL-4, IL-6, IL-8, IL-13, MMP-2, MMP-9, CXCL1, and CXCL12. A scratch assay was used to assess the migratory capacity of the cells, whereas Transwell assays were used to evaluate their invasive potential. RESULTS: Specifically, we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues, linking their abundance to cancer progression. Intriguingly, Resveratrol effectively eradicated these fibroblasts and hindered their senescence, which consequently impeded pancreatic cancer progression. CONCLUSION: This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.

2.
Biomed Res Int ; 2024: 7877265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376256

RESUMO

Resveratrol (RSV), as a natural polyphenol exhibiting antioxidative properties, is studied in the treatment of neurodegenerative diseases. However, RSV has low oral bioavailability. In this study and in order to overcome the issue, RSV was encapsulated into the solid lipid nanoparticles (SLNs). In this study, RSV-loaded solid lipid nanoparticles (RSV-SLNs) were prepared by the solvent emulsification-evaporation technique, and their physicochemical properties were optimized using Box-Behnken response surface methodology. The morphology of the particles was evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The neuroprotective effects of the nanoparticles were investigated in animal models using the Morris water maze (MWM). Then after, the rats were sacrificed, their brains were collected, and the extent of lipid peroxidase (LPO) as well as the level of reduced glutathione (GSH) were determined in the hippocampus section samples. Finally, the collected brain tissues were histologically studied. The particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized nanoparticles were 104.5 ± 12.3 nm, 0.322 ± 0.11, -3.1 ± 0.15 mV, 72.9 ± 5.31% and 14.6 ± 0.53%, respectively. The microscopic images revealed spherically shaped and nonaggregated nanoparticles. The in vivo studies demonstrated higher efficiency of RSV-SLN in the reduction of escape latency time and improvement in the time spent in the target quadrant compared to free RSV. Moreover, it was demonstrated that RSV-SLN posed a higher potency in the reduction of LPO as well as elevation of the GSH levels in the brain samples. The histological studies revealed a decline in neural degeneration and an improvement in the CA1 pyramidal cell morphology. The obtained data revealed that RSV-SLNs caused more reduction in Alzheimer-related symptoms rather than free RSV.


Assuntos
Doença de Alzheimer , Lipídeos , Nanopartículas , Resveratrol , Resveratrol/farmacologia , Resveratrol/química , Resveratrol/administração & dosagem , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Nanopartículas/química , Ratos , Masculino , Lipídeos/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Tamanho da Partícula , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/química , Lipossomos
3.
Food Chem ; 463(Pt 4): 141435, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39378718

RESUMO

Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.

4.
Cell Signal ; 124: 111448, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369759

RESUMO

Excessive adipose accumulation is the primary cause of obesity. Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its anti-obesity properties. However, the precise mechanisms by which RES influences fat deposition have not yet been explored. In this study, the aim was to identify the target proteins and associated pathways of RES in order to elucidate the mechanisms by which RES reduces fat deposition. In this study, mice were administered 400 mg/kg of RES via gavage for 12 weeks. We found that while 400 mg/kg RES had no impact on the growth of the mice, it significantly reduced the weight of various white adipose tissues, as well as the serum and liver concentrations of total cholesterol and triglycerides. Network pharmacology identified 15 potential targets of RES and highlighted the PI3K/AKT signaling pathway as a key pathway. Molecular docking and dynamic simulations suggested that ESR1 might be the target protein through which RES exerts its anti-fat deposition effects. In vitro experiments revealed that ESR1 promotes the proliferation and inhibits the differentiation of 3 T3-L1 adipocytes, and suppresses the PI3K/AKT signaling pathway. Silencing the ESR1 gene altered the ability of RES to inhibit cell differentiation via the PI3K/AKT pathway. Gene expression results in subcutaneous adipose tissue, epididymal fat tissue, and liver tissue of mice were consistent with observations in cells. In summary, RES reduces white fat deposition by directly targeting the ESR1 protein and inhibiting the PI3K/AKT signaling pathway. Our findings provide new insights into the potential use of RES in the prevention and treatment of obesity.

5.
Front Oncol ; 14: 1453164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381045

RESUMO

Background: In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods: HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 µg/mL [10.95 µM], 5 µg/mL [21.91 µM], 10 µg/mL [43.81 µM], 20 µg/mL [87.62 µM], 40 µg/mL [175.25 µM], and 80 µg/mL [350.50 µM]), cisplatin (0.625 µg/mL [2.08 µM], 1.25 µg/mL [4.17 µM], 2.5 µg/mL [8.33 µM], 4.5 µg/mL [15.00 µM], and 10 µg/mL [33.33 µM]), 24 µg/mL (105.15 µM) resveratrol + 9 µg/mL (30.00 µM) cisplatin, and 12 µg/mL (52.57 µM) resveratrol + 4.5 µg/mL (15.00 µM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results: After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion: Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.

6.
Biochem Biophys Res Commun ; 736: 150873, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39461011

RESUMO

Cisplatin (CDDP) is commonly used as an anticancer drug in clinical practice, but severe nephrotoxicity restricts it from exerting anticancer effects. Natural drugs, such as resveratrol, can alleviate the side effects of cisplatin, but their low solubility and gastrointestinal effects prevent them from working. Herein, we developed nanoparticles for kidney injury consisting of a biocompatible material, zein, as a carrier. HA-Zein/Res NPs were fabricated using low-molecular-weight hyaluronic acid coatings. This preparation is non-cytotoxic to renal tubular epithelial cells and can be used with confidence. Low-molecular-weight hyaluronic acid has inflammation-targeting properties and CDDP damage causes renal inflammation. Owing to this property of the low-molecular-weight hyaluronic acid coating, in vivo imaging experiments in mice demonstrated that the HA-Zein/Res NPs enabled more nanoparticles to accumulate in the renal sites affected by inflammation. Efficient resveratrol delivery alleviated kidney injury, and experiments demonstrated that HA-Zein/Res NPs could treat kidney injury while reducing the serum creatinine and urea nitrogen levels in mice. Collectively, these results indicated that this nanomaterial is a promising agent for reducing the clinical nephrotoxicity of cisplatin.

7.
Int J Mol Sci ; 25(20)2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39456789

RESUMO

Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals. Through oxidative stress, immunosuppression, apoptosis, autophagy, and mitochondrial dysfunction, ZEA leads to hepatitis, neurodegenerative diseases, cancer, abortion, and stillbirth in female animals, and decreased sperm motility in male animals. In recent years, due to the influence of climate, storage facilities, and other factors, the problem of ZEA pollution in global food crops has become particularly prominent, resulting in serious problems for the animal husbandry and feed industries, and threatening human health. Resveratrol (RSV) is a natural product with therapeutic activities such as anti-inflammatory, antioxidant, and anticancer properties. RSV can alleviate ZEA-induced toxic effects by targeting signaling pathways such as NF-κB, Nrf2/Keap1, and PI3K/AKT/mTOR via attenuating oxidative damage, inflammatory response, and apoptosis, and regulating cellular autophagy. Therefore, this paper provides a review of the protective effect of RSV against ZEA-induced toxicity and its molecular mechanism, and discusses the safety and potential clinical applications of RSV in the search for natural mycotoxin detoxification agents.


Assuntos
Resveratrol , Zearalenona , Zearalenona/toxicidade , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Substâncias Protetoras/farmacologia , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
8.
Int J Mol Sci ; 25(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39456808

RESUMO

Resveratrol (trans-3,5,4'-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2',4'-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene, PTS), their impacts on metabolism and health were assessed in Sprague Dawley rats after a two-week daily oral administration at the dose of 100 µmol/kg/day. Non-targeted metabolomic analyses were carried out with the liver, heart, brain and plasma samples using gas chromatography-tandem mass spectrometry (GC-MS/MS). Notable in vivo health benefits were observed, as the rats received ISO, PTS or RES showed less body weight gain; the rats received OXY or RES displayed healthier fasting blood glucose levels; while all of the tested stilbenes exhibited cholesterol-lowering effects. Additionally, many important metabolic pathways such as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and fatty acid oxidation were found to be modulated by the tested stilbenes. Besides the reaffirmation of the well-known beneficial effects of RES in diabetes, obesity, cardiovascular disease and Alzheimer's disease, the metabolomic analyses also suggest the anti-diabetic, cardio-, hepato- and neuro-protective activities of ISO; the anti-diabetic, cardio-, hepato- and neuro-protective effects of OXY; and the anti-aging, anti-inflammatory, cardio-, hepato- and neuro-protective potential of PTS. Interestingly, although these stilbenes share a similar structure, their biological activities appear to be distinct. In conclusion, similarly to RES, ISO, OXY and PTS have emerged as promising candidates for further nutraceutical development.


Assuntos
Suplementos Nutricionais , Metabolômica , Ratos Sprague-Dawley , Estilbenos , Animais , Estilbenos/farmacologia , Metabolômica/métodos , Ratos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Resveratrol/farmacologia
9.
Int J Mol Sci ; 25(20)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39457058

RESUMO

Numerous beneficial effects of resveratrol were reported; however, its pharmacological profile is contradictious. Previously, we have demonstrated that resveratrol has a dose-dependent cytoprotective effect and the essential role of autophagy induction was demonstrated. Resveratrol suffers from unfavorable pharmacokinetics, hindering its clinical use. Our aim was to study the cytoprotective effect of resveratrol derivatives to better understand structure-activity relationships that may facilitate the development of compounds with better druglike characteristics. Serum-deprivation-induced caspase activation, free radical generation, mitochondrial membrane depolarization and autophagy were detected in the presence of resveratrol analogs with different oxidation states on mouse embryonal fibroblasts. Distinct cytoprotective mechanisms of the examined compounds were revealed. Monomethyl resveratrol had similar potency to resveratrol (EC50: 85.3 vs. 84.2 µM); however, autophagy induction was not essential for its cytoprotective effect. Oxyresveratrol was found to be a strong antioxidant that can induce direct cytoprotection rather than autophagy. Trimethyl-resveratrol, lacking free hydroxyl groups, induced damage that was too significant and hardly compensated by the activation of cytoprotective machineries, and caspase activation was reduced by only 24.5%. Based on our results, methylation of resveratrol reduces its antioxidant activity, while autophagy induction can still contribute to its cytoprotective effect. The introduction of an additional hydroxyl group, however, augments the antioxidant properties, inducing cytoprotection without autophagy induction.


Assuntos
Antioxidantes , Autofagia , Citoproteção , Resveratrol , Resveratrol/farmacologia , Animais , Autofagia/efeitos dos fármacos , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Citoproteção/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Estilbenos/farmacologia , Estilbenos/química , Estresse Oxidativo/efeitos dos fármacos
10.
Cell Biochem Biophys ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412707

RESUMO

Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.

11.
Behav Brain Res ; : 115304, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447964

RESUMO

Perimenopause constitutes a pivotal transitional phase characterized by hormonal variability and heightens vulnerability to depressive episodes. This study seeks to elucidate the mechanism of resveratrol (RES) in perimenopausal depression through integrated network pharmacology, molecular docking analysis, and experimental validation. Screening yielded 83 RES-related disease targets, with IL10, CCL2, and SERPINE1 identified as core genes overexpressed in perimenopausal depression. GO analysis and KEGG pathway enrichment analysis predicted that the target genes could regulate the PI3K-Akt, FoxO, HIF-1, and IL-17 signaling pathways. Molecular docking indicated SERPINE1 as a promising RES target. Consistently, in vitro experiments showed that RES significantly attenuated the inflammatory response and apoptosis of lipopolysaccharide-stimulated CTX-TNA2 cells. RES also reduced the expression of NLRP3, caspase-1, SERPINE1 proteins and acetylation, while increasing the expression of BDNF, TrkB, SIRT1, and decreasing MAO-A proteins. In vivo experiments demonstrated that RES also significantly improved the depression behaviors, increased the levels of 5-HT1A and SIRT1, and decreased levels of MAO-A of depression rats. This study unveils RES's potential targets and mechanism in perimenopausal depression, laying groundwork for future research.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39446148

RESUMO

Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.

13.
Int J Med Sci ; 21(13): 2437-2449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39439463

RESUMO

Background: Chronic Kidney Disease (CKD) is a systemic progressive disorder related to uremic toxins. Uremic toxins disturb intestinal epithelial destruction and barrier dysfunction leading to gut-renal axis disorders in CKD. We examine the protective role of Resveratrol (RSV) against uremic toxin indoxyl sulphate (IS) related intestinal barrier disturbances among CKD. METHODS: 5/6 nephrectomized mice and isolated primary mouse intestinal epithelial cells (IEC-6) are used to assess the influence of IS on intestinal epithelial tight junction barriers. Serum biochemistry parameters, hematoxylin & eosin (H&E) and immunohistochemistry staining (IHC), Western blot analysis, q-PCR, and si-RNA targeted against AhR were used in this study. RESULTS: IS decreases the expression of tight junction proteins (TJPs) ZO-1 and claudins, increases the apoptosis and impairs mitophagy within IECs. Treatment with RSV not only reduces the loss of TJPs but also modulates mitophagy markers LC3 and P62, and concurrently decreases the levels of apoptosis-related proteins. Significantly, RSV ameliorates intestinal barrier dysfunction in CKD by modulating mitophagy via the IRF1-DRP1 axis, restoring autophagy, and inhibiting apoptosis through the activation of the PI3K/Akt-Ho-1 anti-oxidant pathway, and mTOR regulated pathways. CONCLUSION: This study establishes RSV as a potential therapeutic agent that can ameliorate gut-renal axis disturbances in CKD. These findings provide valuable insights into mechanisms underlying RSV RSV-mediated gut-renal axis, highlighting its effectiveness as a potential treatment option for CKD-associated intestinal barrier dysfunction.


Assuntos
Apoptose , Indicã , Mucosa Intestinal , Mitofagia , Insuficiência Renal Crônica , Resveratrol , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Indicã/toxicidade , Toxinas Urêmicas/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Masculino , Modelos Animais de Doenças
14.
Front Plant Sci ; 15: 1423323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39439517

RESUMO

Introduction: Resveratrol (RSV) is a natural polyphenolic compound derived from a variety of plants that possesses a wide range of biological activities, including antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, anti-aging, anti-radiation damage, anti-apoptosis, immune modulation, regulation of glucolipid metabolism, inhibition of lipid deposition, and anti-neuro. It is therefore considered a promising drug with the potential to treat a wide range of diseases. Method: In this study, using Web of Science Core Collection (WoSCC) and CiteSpace bibliometric tool, VOSviewer quantitatively visualized the number of countries, number of authors, number of institutions, number of publications, keywords, and references of 16,934 resveratrol-related papers from 2014-2023 for quantitative and qualitative analysis. Results: The results showed that an average of 1693.4 papers were published per year, with a general upward trend. China had the most publications with 5877. China Medical University was the institution with the largest number of publications and the highest number of citations in the field. The research team was mainly led by Prof. Richard Tristan, and the journal with the highest number of published papers was Molecular. Dietary polyphenols, oxidative stress, and antioxidant and anti-inflammatory effects are the most frequently cited articles. Oxidative stress, apoptosis, expression, and other keywords play an important role in connecting other branches of the field. Discussion: Our analysis indicates that the integration of nanoparticles with RSV is poised to become a significant trend. RSV markedly inhibits harmful bacteria, fosters the proliferation of beneficial bacteria, and enhances the diversity of the intestinal flora, thereby preventing intestinal flora dysbiosis. Additionally, RSV exhibits both antibacterial and antiviral properties. It also promotes osteogenesis and serves a neuroprotective function in models of Alzheimer's disease. The potential applications of RSV in medicine and healthcare are vast. A future research challenge lies in modifying its structure to develop RSV derivatives with superior biological activity and bioavailability. In the coming years, innovative pharmaceutical formulations of RSV, including oral, injectable, and topical preparations, may be developed to enhance its bioavailability and therapeutic efficacy.

15.
Biomedicines ; 12(10)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39457489

RESUMO

The effect of resveratrol (RESV) on α-lactalbumin (α-LA) thermal stability was evaluated using differential scanning calorimetry (DSC), circular dichroism (CD) and dynamic light scattering (DLS) measurements. Complementary information offered by molecular docking served to identify the binding site of the ligand on the native structure of protein and the type of interacting forces. DSC thermograms revealed a double-endotherm pattern with partial overlapping of the two components. The most relevant effect of RESV is manifested in the narrowing of the protein thermal fingerprint: the first process (peak temperature T1) is shifted to higher temperatures while the second one (peak temperature T2) to lower values. The CD data indicated partial conformational changes in the protein non-α-helix domain at T1, resulting in a ß-sheet richer intermediate (BSRI) with an unaffected, native-like α-helix backbone. The RESV influence on this process may be defined as slightly demoting, at least within DSC conditions (linear heating rate of 1 K min-1). On further heating, unfolding of the α-helix domain takes place at T2, with RESV acting as a promoter of the process. Long time incubation at 333 K produced the same type of BSRI: no significant effect of RESV on the secondary structure content was detected by CD spectroscopy. Nevertheless, the size distribution of the protein population obtained from DLS measurements revealed the free (non-bound) RESV action manifested in the developing of larger size aggregates.

16.
Nutrients ; 16(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39458427

RESUMO

BACKGROUND: The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS: Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS: The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS: Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.


Assuntos
Transtornos Neurocognitivos , Polifenóis , Vinho , Vinho/análise , Humanos , Polifenóis/farmacologia , Transtornos Neurocognitivos/prevenção & controle , Animais , Consumo de Bebidas Alcoólicas , Disfunção Cognitiva/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
17.
Immun Inflamm Dis ; 12(10): e70041, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39436197

RESUMO

BACKGROUND: Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE: To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS: The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS: Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION: Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Neoplasias , Compostos Fitoquímicos , Transdução de Sinais , Autofagia/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos
18.
Cells ; 13(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39451250

RESUMO

Resveratrol (RES) is a polyphenol with natural anti-inflammatory and antioxidant properties. It is found in abundance in plants, i.e., grapes and mulberry fruit. In addition, synthetic forms of RES exist. Since the discovery of its specific biological properties, RES has emerged as a candidate substance not only with modeling effects on the immune response but also as an important factor in preventing the onset and progression of cardiovascular disease (CVD). Previous research provided strong evidence of the effects of RES on platelets, mitochondria, cardiomyocytes, and vascular endothelial function. In addition, RES positively affects the coagulation system and vasodilatory function and improves blood flow. Not only in humans but also in veterinary medicine, cardiovascular diseases have one of the highest incidence rates. Canine and human species co-evolved and share recent evolutionary selection processes, and interestingly, numerous pathologies of companion dogs have a human counterpart. Knowledge of the impact of RES on the cardiovascular system of dogs is becoming clearer in the literature. Dogs have long been recognized as valuable animal models for the study of various human diseases as they share many physiological and genetic similarities with humans. In this review, we aim to shed light on the pleiotropic effects of resveratrol on cardiovascular health in dogs as a translational model for human cardiovascular diseases.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Resveratrol , Animais , Resveratrol/farmacologia , Cães , Doenças Cardiovasculares/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Antioxidantes/farmacologia
19.
Brain Sci ; 14(10)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39451994

RESUMO

Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.

20.
Tissue Cell ; 91: 102589, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39454472

RESUMO

Aluminum is a widely distributed metal that, while generally safe at low levels, can become toxic when accumulated in the body. Its exposure is daily through various sources, including food, water, and medications. High levels of aluminum have been shown to adversely affect the kidneys and liver, leading to significant organ damage. Resveratrol-tempeh is a safe protective agent against organ damage caused by aluminum. Here, we investigated the impact of resveratrol on liver and kidney toxicity and Al-induced levels of catalase and malondialdehyde. The mice group was the control group, Al-group, Al+REST5-group, and Al+REST10-group. Aluminum and resveratrol were administered intraperitoneally to mice for four weeks, but resveratrol was administered one hour after exposure to aluminum. Mice were killed by cervical dislocation; the liver and kidney were isolated for slide, and the level of an antioxidant enzyme of catalase and oxidant of malondialdehyde was measured. The results showed that administration of aluminum at a dose of 200 mg/kg body weight caused glomerular shrinkage and proximal tubule degeneration in the kidneys. In addition, it also caused liver tissue damage, with hepatocytes undergoing degeneration, sinusoids dilating, and decreased body weight in the mice. Administration of resveratrol-tempeh tended to decrease malondialdehyde levels and increase catalase activity, although the changes were not significant. It seems that resveratrol-tempeh can repair liver and kidney damage and restore them to normal conditions. Conclusion: Aluminum at 200 mg/kg is toxic to mice. Resveratrol-tempeh can be considered a potential candidate to protect kidney and liver damage caused by aluminum chloride toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA