RESUMO
Reuterin, a mixture of different forms of 3-hydroxypropanal (3-HPA), including HPA hydrate and HPA dimer, is an antimicrobial compound converted from glycerol by Lactobacillus reuteri and other strains. Although its antimicrobial function may be related to its interaction with thiol groups, its temperature stability and effect on the gut environment remain unclear. The present study evaluated the antimicrobial effects and activity of reuterin against Escherichia coli and Salmonella typhimurium. Utilization of a reliable in vitro gut microbiome fermentation system revealed that reuterin has a modulatory effect on the gut microbial community. Reuterin treatment completely inhibited H2 and NH3 production in the gut and significantly enhanced the synthesis of branched short-chain fatty acids. 16s rRNA sequencing indicated that reuterin promoted the growth of Proteobacteria and Bacteroidetes in the in vitro system and significantly modulated gut microbiota composition.
RESUMO
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
RESUMO
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.
Assuntos
Carcinoma Hepatocelular , Caspase 8 , DNA Mitocondrial , Neoplasias Hepáticas , Proteínas de Membrana , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Caspase 8/metabolismo , Caspase 8/genética , DNA Mitocondrial/genética , Linhagem Celular Tumoral , Animais , Camundongos , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
This research aimed to develop, optimize, and evaluate a new antifungal nanoemulsion system based on the crude reuterin-synergistic essential oils (EOs) hybrid to overcome the EOs application limits. At first, the antifungal effects of the Lactobacillus plantarum and Lactobacillus reuteri cell-free extracts (CFE) were tested against the Botrytis cinerea, Penicillium expansum, and Alternaria alternata as indicator fungus using broth microdilution method. The L. reuteri CFE with the MIC of 125 µL/mL for B. cinerea and 250 µL/mL for P. expansum and A. alternata showed more inhibitory effects than L. plantarum. Next, reuterin as a significant antibacterial compound in the L. reuteri CFE was induced in glycerol-containing culture media. To reach a nanoemulsion with maximum antifungal activity and stability, the reuterin concentration, Tween 80 %, and ultrasound time were optimized using response surface methodology (RSM) with a volumetric constant ratio of 5 % v/v oil phase including triple synergistic EOs (thyme, cinnamon, and rosemary) at MIC concentrations. Based on the Box-Behnken Design, the maximum antifungal effect was observed in the treatment with 40 mM reuterin, 1 % Tween 80, and 3 min of ultrasound. The growth inhibitory diameter zones of B. cinerea, P. expansum, and A. alternata were estimated 6.15, 4.25, and 4.35 cm in optimum nanoemulsion, respectively. Also, the minimum average particle size diameter (16.3 nm) was observed in nanoemulsion with reuterin 40 mM, Tween 80 5 %, and 3 min of ultrasound treatment. Zeta potential was relatively high within -30 mV range in all designed nanoemulsions which indicates the nanoemulsion's stability. Also, the prepared nanoemulsions, despite initial particle size showed good stability in a 90-d storage period at 25 °C. In vivo assay, showed a significant improvement in the protection of apple fruit treated with reuterin-EOs nanoemulsions against fungal spoilage compared to free reuterin nanoemulsion. Treatment of apples with nanoemulsion containing 40 mM reuterin showed a maximum inhibitory effect on B. cinerea (5.1 mm lesion diameter compared to 29.2 mm for control fruit) within 7 d at 25 °C. In summary, the present study demonstrated that reuterin-synergistic EOs hybrid with boosted antifungal activities can be considered as a biopreservative for food applications.
Assuntos
Antifúngicos , Emulsões , Gliceraldeído , Óleos Voláteis , Propano , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Emulsões/farmacologia , Propano/farmacologia , Propano/química , Antifúngicos/farmacologia , Antifúngicos/química , Gliceraldeído/farmacologia , Gliceraldeído/análogos & derivados , Testes de Sensibilidade Microbiana , Limosilactobacillus reuteri/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimentoRESUMO
The primary goal of this scoping review is to collect, analyze, and critically describe information regarding the role of the main compounds (reuterin, phenyllactic acid, and exopolysaccharides) produced by LAB that possess antifungal properties and provide some suggestions for further research. The use of lactic acid bacteria (LAB) to mitigate spoilage and extend the shelf life of foodstuffs has a long history. Recently, there has been a growing interest in the unique properties of these additions to the foodstuffs in which they are applied. In recent studies regarding biopreservation, significant attention has been given to the role of these microorganisms and their metabolites. This fascinating recent discipline aims not only to replace traditional preservation systems, but also to improve the overall quality of the final product. The biologically active by-products produced by lactic acid bacteria are synthesized under certain conditions (time, temperature, aerobiosis, acidity, water activity, etc.), which can be enacted through one of the oldest approaches to food processing: fermentation (commonly used in the dairy and bakery sectors). This study also delves into the biosynthetic pathways through which they are synthesized, with a particular emphasis on what is known about the mechanisms of action against molds in relation to the type of food.
RESUMO
Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-ß-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-ß-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-ß-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-ß-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.
Assuntos
Aspergillus flavus , Gliceraldeído/análogos & derivados , Propano , beta-Glucanas , Catalase/metabolismo , Esporos Fúngicos/metabolismo , Antifúngicos/química , Quitina Sintase/metabolismoRESUMO
BACKGROUND: Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS: Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS: Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS: Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.
Assuntos
Limosilactobacillus reuteri , Microbiota , Animais , Enterobacteriaceae , Glicerol , Galinhas , Butiratos , RNA Ribossômico 16S/genéticaRESUMO
Loigolactobacillus coryniformis is a member of lactic acid bacteria isolated from various ecological niches. We isolated a novel L. coryniformis strain FOL-19 from artisanal Tulum cheese and performed the whole-genome sequencing for FOL-19. Then, genomic characterization of FOL-19 against ten available whole genome sequences of the same species isolated from kimchi, silage, fermented meat, air of cowshed, dairy, and pheasant chyme was performed to uncover the genetic diversity and biotechnological potential of overall species. The average genome size of 2.93 ± 0.1 Mb, GC content of 42.96% ± 0.002, number of CDS of 2905 ± 165, number of tRNA of 56 ± 10, and number of CRISPR elements of 6.55 ± 1.83 was found. Both Type I and II Cas clusters were observed in L. coryniformis. No bacteriocin biosynthesis gene clusters were found. All strains harbored at least one plasmid except KCTC 3167. All strains were predicted to carry multiple IS elements. The most common origin of the IS elements was belong to Lactiplantibacillus plantarum. Comparative genomic analysis of L. coryniformis revealed hypervariability at the strain level and the presence of CRISPR/Cas suggests that L. coryniformis holds a promising potential for being a reservoir for new CRISPR-based tools. All L. coryniformis strains except PH-1 were predicted to harbor pdu and cbi-cob-hem gene clusters encoding industrially relevant traits of reuterin and cobalamin biosynthesis, respectively. These findings put a step forward for the genomic characterization of L. coryniformis strains for biotechnological applications via genome-guided strain selection to identify industrially relevant traits.
RESUMO
Limosilactibacilus reuteri (L. reuteri) is a gram-positive probiotic that does not produce peroxidase. Certain strains of L. reuteri have been approved for use in human health products in China. The probiotic mechanism of L. reuteri in organisms can be divided into two directions: first, L. reuteri directly regulates the gut microbiota and indirectly affecting the host; second, L. reuteri secretes substances that directly affect the host. Numerous studies have shown that a deficiency in this commensal bacterium is associated with various diseases in different systems (such as inflammation in the digestive system, systemic lupus erythematosus in the autoimmune system, metabolic syndrome in the endocrine system, and mastitis in the reproductive system). However, although recent studies have found that L. reuteri can also promote disease progression, but overall, it is more beneficial than harmful in general. Further, more in-depth experiments are needed to determine whether L. reuteri should be removed from probiotics in the future. In this review, we provide an overview of the research history of L. reuteri and conclude with the main mechanisms through which this intestinal symbiont can improve health or aggravate diseases.
Assuntos
Corantes , Microbioma Gastrointestinal , Humanos , Feminino , China , Progressão da Doença , InflamaçãoRESUMO
Reuterin is a broad-spectrum antimicrobial substance produced by lactic acid bacteria, and most previous studies have reported that reuterin is only produced under anaerobic conditions. If there are lactic acid bacteria that also produce it under aerobic conditions, it could be applied to fermented foods. In this study, it was found that Lactobacillus coryniformis WBB05 showed optimal reuterin production (123 mM reuterin from 200 mM glycerol) when incubated aerobically at 20°C. Furthermore, the minimum inhibitory concentration (MIC) of reuterin was determined for starter lactic acid bacteria strains and cheese moulds. MIC toward Penicillium camemberti was 0.125 mM and the white mould starter was much more sensitive than other moulds.
Assuntos
Anti-Infecciosos , Gliceraldeído , Animais , Gliceraldeído/farmacologia , Lactobacillus , Anti-Infecciosos/farmacologia , FungosRESUMO
Objectives: Despite the use of common irrigating solution with antimicrobial properties, failed root canal treatment remains a significant problem in endodontics. In the present study, we examined the efficacy of reuterin derived from probiotic bacteria, Lactobacillus reuteri on the biofilms of major endodontic pathogens using ex vivo model of root canal infections. Methods: Biofilms of major endodontic pathogens namely Enteoroccus faecalis, Fusobacterim nucleatum, Porphyromonas gingivalis, and Candida albicans were formed on root canals of 60 human premolar tooth samples accordingly a standard protocol. Thereafter, teeth were treated with either 2.5 % NaOCl (positive control), various concentrations of reuterin (test-group) or sterilized-distilled water (negative control) in a time-dependent assay. The efficacy of irrigation was evaluated by a time-dependent assay at 5 min and 30 min after irrigation by colony-forming units assay. The findings were further confirmed by species-specific real-time PCR. Data were statistically analysed using one way ANOVA with a significance level of P < 0.05. Results: Reuterin isolated from L. reuteri was effective against E. faecalis, C. albicans, F. nucleatum, and P. gingivalis biofilms, with a concentration of 100 µg/mL being the most effective compared to the negative control (P < 0.05) and also showed similar efficacy when compared with NaOCl. Conclusion: Reuterin isolated from L. reuteri has ability to inhibit in vitro and ex-vivo biofilms of endodontic pathogens, namely E. faecalis, F. nucleatum, P. gingivalis, and C. albicans. Reuterin has potential as a root canal irrigating solution due to its antibiofilm activity. Further research is warranted to determine the potential of probiotic bacteriotherapy in root canal systems.
RESUMO
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
RESUMO
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
RESUMO
In the present study, bacterial-derived antimicrobial agents included 5 mM reuterin combined with either 103.91 mM lactic acid (RL) or 0.08 µM microcin J25 (RJ) were evaluated for their effects on the microbiota and sensory attributes of raw chicken legs. Peracetic acid (13.67 mM), a conventional chemical commonly used in the poultry industry, was used as a positive control to compare efficacy. The chicken legs were sprayed with antimicrobial solutions and aerobically stored at 4 °C for 10 days. The RL treatment maintained the total viable count below the limit of 7 log CFU/g until the 8th day. Therefore, compared to the nontreated group, shelf-life was extended by 3 days in the RL treated group. The RJ treatment extended the shelf-life to 7 days, which is similar to what was achieved with the use of peracetic acid. Based on culture-independent amplicon sequencing, the RL and RJ treatments affected the microbial community on the chicken legs, inducing a delay in the increase of Pseudomonas, Psychrobacter and Carnobacterium while decreasing of Shigella. Significant decreases in sensory scores occurred in the nontreated group, while slight changes occurred in the combinations treated groups over the same period. Overall, sensory property scores for chicken legs treated with RL and RJ remained higher (P < 0.05) than those treated with peracetic acid or without antimicrobial agents. The antimicrobial combinations delayed the deterioration of sensory attributes throughout the storage period. These results suggest that RL and RJ provide a promising natural-sourced antimicrobial approach to control the growth of spoilage microorganisms on chicken legs.
Assuntos
Desinfetantes , Microbiota , Animais , Galinhas/microbiologia , Conservação de Alimentos/métodos , Ácido Peracético/farmacologia , Bactérias , Desinfetantes/farmacologia , Ácido Láctico/farmacologia , Contagem de Colônia Microbiana , Carne/microbiologiaRESUMO
Reuterin is well-known for its broad-spectrum antimicrobial ability, while the other potential bioactivity is not yet clear. The present study aims to investigate the immunomodulatory activity of reuterin on chicken macrophage HD11 cells for the first time and evaluate whether reuterin is able to regulate the lipopolysaccharide-stimulated inflammatory response. The results showed that the safe medication range of reuterin was less than 250 µM. Reuterin treatment for 6 h decreased the transcriptional of CD86, IL-1ß and iNOS and increased the expression of CD206 in a dose-dependent way, but reuterin treatment for 12 h contrary increased the expression of IL-1ß, IL-6 and IL-10. However, it was noticed that reuterin treatment for 12 h significantly decreased the production of reactive oxygen species (ROS) and suppressed the phagocytosis activity of HD11 macrophages against bacteria. Further, the results showed that preincubation or coincubation with reuterin significantly attenuated the promotive effects of lipopolysaccharide (LPS) on transcription of proinflammatory cytokines (including IL-1ß, IL-6 and TNF-α) and obviously inhibited nitric oxide (NO) production as well as the protein expression of inducible nitric oxide synthase (iNOS). Meanwhile, Mechanism studies implied that reuterin might exert an anti-inflammatory effect on LPS-stimulated cells by downregulating the expression of TLR4/MyD88/TRAF6 and blocking the activation of NF-κB as well as MAPKs signaling pathways. Additionally, it was found that both pretreatment and cotreatment with reuterin remarkably inhibited the oxidative stress induced by LPS stimulation by activating the Nrf2/HO-1 signaling pathway and enhancing the activities of antioxidative enzymes. These findings suggested the immunoregulatory function of reuterin and indicated this bacterial metabolite was able to inhibit the inflammation and oxidative stress of HD11 macrophages once exposed to LPS stimulation.
RESUMO
Probiotic Lactobacillus reuteri has positive effects on health through inhibiting pathogenic bacteria and the ability to reduce inflammation. This study investigates the ability of reuterin isolated from L. reuteri Indonesian strain for increasing mRNA expression of interleukin (IL)-8 and human beta-defensin (hBD)-2 gene by epithelial cells, after exposure to oral bacteria. L. reuteri isolated from Indonesian's saliva, and species was confirmed by PCR, using 16S rRNA specific gene. To produce reuterin, the isolate was mixed in glycerol-containing MRS broth. Reuterin molecule's weight was counted by SDS-PAGE. Streptococcus mutans ATCC-25175 and Porphyromonas gingivalis ATCC-33277 were put in water (80°C) for 30 min, and each killed bacterial (107 CFU/mL) was inoculated into HaCat cell line (105 cell/mL). Reuterin was added in different concentrations (100%, 50%, 25%, 12,5%) and different incubation time at 37°C, 5% CO2. RNA was extracted, and a reverse transcription procedure was performed to obtain cDNA. Subsequently, a quantitative PCR method was performed to analyse the transcription level of IL-8 and HBD-2 mRNA expressed by inflamed HaCat cells. All results were statistically analysed by ANOVA test. PCR assays showed that clinical isolates were L. reuteri. Quantitative PCR results showed reuterin decreased the expression of IL-8 and increased the expression of hBD-2 in all concentrations and time periods set in this study (p < 0.05). Reuterin isolated from L. reuteri Indonesian strain increased expression of human beta defensin-2 as antimicrobial peptide and may be useful in combating inflammation.
RESUMO
Probiotics are bacterial strains that are known to provide host health benefits. Limosilactobacillus reuteri is a well-documented lactic acid bacterium that has been cultured from numerous human sites. The strain investigated was L. reuteri DSM 20016, which has been found to produce useful metabolites. The strain was explored using genomic and proteomic tools, manual searches, and databases, including KEGG, STRING, BLAST Sequence Similarity Search, and UniProt. This study located over 200 key genes that were involved in human health benefit pathways. L. reuteri DSM 20016 has metabolic pathways to produce acetate, propionate, and lactate, and there is evidence of a pathway for butanoate production through a FASII mechanism. The bacterium produces histamine through the hdc operon, which may be able to suppress proinflammatory TNF, and the bacterium also has the ability to synthesize folate and riboflavin, although whether they are secreted is yet to be explored. The strain can bind to human Caco2 cells through srtA, mapA/cnb, msrB, and fbpA and can compete against enteric bacteria using reuterin, which is an antimicrobial that induces oxidative stress. The atlas could be used for designing metabolic engineering approaches to improve beneficial metabolite biosynthesis and better probiotic-based cures.
RESUMO
BACKGROUND: Since the overuse of antibiotics in animal production has led to a selection of antibiotic-resistant pathogens that affect humans and animals as well. Scientists are therefore searching for novel natural alternatives to antibiotics. In this study Lactobacillus reuteri and a combination of reuterin and microcin J25 (RJ) were evaluated as promoters of growth and modulators of the cecal microbiota and metabolite profiles in broiler chickens. One-day-old Cobb 500 male broilers were distributed to 8 treatments: negative control (without antibiotic), positive control (bacitracin), three concentrations of RJ and three doses of L. reuteri plus glycerol. The birds (2176, 34 per pen, 8 pens per treatment) were reared for 35 d. RESULTS: The body weight of the bacitracin and 5 mmol/L reuterin combined with 0.08 µmol/L microcin J25 (10RJ) treatment group was significantly higher than that of the negative control group (P < 0.05). L. reuteri had no significant effect on broiler growth. MiSeq high-throughput sequencing of 16S rRNA showed clustering of cecal microbial operational taxonomic unit diversity according to treatment. The influence of bacitracin and 10RJ on bacterial community overall structure was similar. They promoted Ruminococcaceae, Lachnospiraceae and Lactobacillaceae, increased the relative abundance of Faecalibacterium and decreased the abundance of Bacteroides and Alistipes, while the negative control condition favored Bacteroidaceae and Rikenellaceae. Furthermore, 10RJ increased the concentration of short-chain fatty acid in the cecum and changed the metabolome overall. CONCLUSIONS: These overall suggest that 10RJ can promote a host-friendly gut environment by changing the cecal microbiome and metabolome. This combination of natural antimicrobial agents in the drinking water had a positive effect on broiler growth and may be suitable as an alternative to antibiotic growth promoters.
RESUMO
The use of teat dips is one of the most effective strategies to control mastitis by preventing new intramammary infections. Reducing bacterial load on teat skin helps control the spread of pathogens and spoilage and improves the quality of milk. The objective of this study was to evaluate the reduction of bacterial populations through the application of bacteriocin-based teat formulas. Teats of 12 Holstein cows received 2 different concentrations of bactofencin A, nisin, and reuterin alone or in combination, as well as iodine (positive control) and saline (negative control). Teat swabs were collected before and after application of teat formulas and analyzed for staphylococci, streptococci, and total bacteria counts. There were no differences for staphylococci, streptococci, and total bacterial counts for samples collected before application throughout the entire experiment. Reuterin-low and reuterin-high treatments reduced total bacterial count by 0.47 and 0.36 logs, respectively, whereas bactofencin A had no effect on any tested bacterial groups. Nisin-low treatment reduced staphylococci, streptococci, and total bacterial counts by 0.47, 0.30 and 0.50 logs, respectively. Nisin-high treatment resulted in 0.50, 0.50, and 0.47 log reduction for staphylococci, streptococci, and total bacterial counts. The bacteriocin consortium showed the highest reduction rates with 0.91, 0.54, and 0.90 log reductions obtained for staphylococci, streptococci, and total bacteria counts, respectively, for the low-concentration consortium. Similarly, the high-concentration consortium showed reduction rates with 0.95, 0.60, and 0.82 log reductions obtained for staphylococci, streptococci, and total bacteria counts, respectively. Thus, nisin and the bacteriocin consortium showed the most promise as a teat disinfectant by reducing staphylococci, streptococci, and total bacteria counts.
Assuntos
Bacteriocinas , Doenças dos Bovinos , Mastite Bovina , Nisina , Animais , Bactérias , Carga Bacteriana/veterinária , Bacteriocinas/farmacologia , Bovinos , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/prevenção & controle , Leite , Staphylococcus , StreptococcusRESUMO
Bacteria-derived natural antimicrobial compounds such as bacteriocins, reruterin, and organic acids have recently received substantial attention as food preservatives or therapeutic alternatives in human or animal sectors. This study aimed to evaluate the antimicrobial activity of different bacteria-derived antimicrobials, alone or in combination, against a large panel of Gram-negative and Gram-positive bacteria. Bacteriocins, including microcin J25, pediocin PA-1, nisin Z, and reuterin, were investigated alone or in combination with lactic acid and citric acid, using a checkerboard assay. Concentrations were selected based on predetermined MICs against Salmonella enterica subsp. enterica serovar Newport ATCC 6962 and Listeria ivanovii HPB28 as Gram-negative and Gram-positive indicator strains, respectively. The results demonstrated that the combination of microcin J25 + citric acid + lactic acid; microcin J25 + reuterin + citric acid; and microcin J25 + reuterin + lactic acid tested against S. Newport ATCC 6962 showed synergistic effects (FIC index = 0.5). Moreover, a combination of pediocin PA-1 + citric acid + lactic acid; and reuterin + citric acid + lactic acid against L. ivanovii HPB28 showed a partially synergistic interactions (FIC index = 0.75). Nisin Z exerted a partially synergistic effect in combination with acids (FIC index = 0.625 -0.75), whereas when it was combined with reuterin or pediocin PA-1, it showed additive effects (FIC index = 1) against L. ivanovii HPB28. The inhibitory activity of synergetic consortia were tested against a large panel of Gram-positive and Gram-negative bacteria. According to our results, combining different antimicrobials with different mechanisms of action led to higher potency and a broad spectrum of inhibition, including multidrug-resistance pathogens. IMPORTANCE Reuterin and bacteriocins, including microcin J25, pediocin PA-1, nisin were produced and purified with >90% purity. Using the broth-based checkerboard assay the interaction between these compounds (synergetic, additive, or antagonistic) was assessed. By combining different natural antimicrobials with different modes of action and structure (reuteirn, microcin J25, pediocin PA-1, and organic acids), we successfully developed five different synergetic consortia with improved antimicrobial activity and a broad spectrum of inhibition. These consortia were shown to be effective against a large panel of pathogenic and spoilage microorganisms as well as clinically important multidrug-resistance bacteria. Moreover, because the lower concentrations of bacteriocins and reuterin are used in the synergetic consortia, there is a limited risk of toxicity and resistance development for these compounds.