Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Hematol Rep ; 16(2): 336-346, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921182

RESUMO

Romidepsin is an important therapeutic option for patients with peripheral T-cell lymphoma (PTCL). However, the timing of romidepsin administration remains controversial. The objective of this study was to characterize the safety and efficacy of romidepsin as consolidation therapy after gemcitabine, dexamethasone, and cisplatin (GDP) therapy (GDPR). This study of patients treated between March 2019 and March 2021 was registered with the Japan Registry of Clinical Trials (registration number: jRCT0000000519). If complete response, partial response, or stable disease was confirmed after 2-4 GDP cycles, romidepsin was administered every 4 weeks for 1 year. Seven patients with relapsed/refractory (R/R) PTCL (T-follicular helper phenotype [n = 1] and angioimmunoblastic T-cell lymphoma [n = 6]) were included in this prospective study (PTCL-GDPR). After a median follow-up of 34 months of patients in PTCL-GDPR, the 2-year overall survival rate was 71%, and the overall response rate after treatment was 57%. Common adverse events in patients with PTCL-GDPR included hematological toxicities such as neutropenia, which improved with supportive treatment. There were no treatment-related mortalities. GDPR might be safe and effective in elderly transplant-ineligible patients with R/R PTCL; however, further investigation is required.

2.
Mol Med ; 30(1): 73, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822233

RESUMO

Human malignant pleural mesothelioma (hMPM) is an aggressive, rare disease with a poor prognosis. Histologically, MPM is categorized into epithelioid, biphasic, and sarcomatoid subtypes, with the epithelioid subtype generally displaying a better response to treatment. Conversely, effective therapies for the non-epithelioid subtypes are limited. This study aimed to investigate the potential role of FK228, a histone deacetylase inhibitor, in the suppression of hMPM tumor growth. We conducted a comprehensive analysis of the histological and molecular characteristics of two MPM cell lines, CRL-5820 (epithelioid) and CRL-5946 (non-epithelioid). CRL-5946 cells and non-epithelioid patient-derived xenografted mice exhibited heightened growth rates compared to those with epithelioid MPM. Both CRL-5946 cells and non-epithelioid mice displayed a poor response to cisplatin. However, FK228 markedly inhibited the growth of both epithelioid and non-epithelioid tumor cells in vitro and in vivo. Cell cycle analysis revealed FK228-induced G1/S and mitotic arrest in MPM cells. Caspase inhibitor experiments demonstrated that FK228-triggered apoptosis occurred via a caspase-dependent pathway in CRL-5946 but not in CRL-5820 cells. Additionally, a cytokine array analysis showed that FK228 reduced the release of growth factors, including platelet-derived and vascular endothelial growth factors, specifically in CRL-5946 cells. These results indicate that FK228 exhibits therapeutic potential in MPM by inducing cytotoxicity and modulating the tumor microenvironment, potentially benefiting both epithelioid and non-epithelioid subtypes.


Assuntos
Apoptose , Proliferação de Células , Depsipeptídeos , Mesotelioma Maligno , Mesotelioma , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/patologia , Linhagem Celular Tumoral , Camundongos , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino , Células Epitelioides/patologia , Ciclo Celular/efeitos dos fármacos
3.
Chem Biol Interact ; 394: 110989, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574836

RESUMO

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.


Assuntos
Galinhas , Inibidores de Histona Desacetilases , Metiltransferases , Peixe-Zebra , Animais , Humanos , Camundongos , Ratos , Sequência de Aminoácidos , Sequência Conservada , Depsipeptídeos/farmacologia , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Especificidade da Espécie , Compostos de Sulfidrila/metabolismo , Peixe-Zebra/metabolismo
4.
CNS Neurosci Ther ; 30(3): e14646, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523117

RESUMO

AIM: The class I histone deacetylases (HDACs) implicate in microglial heterogenization and neuroinflammation following Intracerebral hemorrhage (ICH). Ferroptosis has also been reported in the ICH model. However, the relationship between HDAC1/2's role in microglial heterogenization and neuronal ferroptosis remains unclear. METHODS: In both in vivo and in vitro models of ICH, we used Romidepsin (FK228), a selective HDAC1/2 inhibitor, to investigate its effects on microglial heterogenization and neuronal ferroptosis. In the in vitro ICH model using Hemin, a transwell system was utilized to examine how microglia-driven inflammation and ICH-triggered neuronal ferroptosis interact. Immunostaining, Western blotting and RT-qPCR were used to evaluate the microglial heterogenization and neuronal ferroptosis. Microglial heterogenization, neuronal ferroptosis, and neurological dysfunctions were assessed in vivo ICH mice model performed by autologous blood injection. RESULTS: HDAC1/2 inhibition altered microglial heterogenization after ICH, as showing the reducing neuroinflammation and shifting microglia towards an anti-inflammatory phenotype by immunostaining and qPCR results. HDAC1/2 inhibition reduced ferroptosis, characterized by high ROS and low GPx4 expression in HT22 cells, and reduced iron and lipid deposition post-ICH in vivo. Additionally, the Nrf2/HO1 signaling pathway, especially acetyl-Nrf2, activated in the in vivo ICH model due to HDAC1/2 inhibition, plays a role in regulating microglial heterogenization. Furthermore, HDAC1/2 inhibition improved sensorimotor and histological outcomes post-ICH, offering a potential mechanism against ICH. CONCLUSION: Inhibition of HDAC1/2 reduces neuro-ferroptosis by modifying the heterogeneity of microglia via the Nrf2/HO1 pathway, with a particular focus on acetyl-Nrf2. Additionally, this inhibition aids in the faster removal of hematomas and lessens prolonged neurological impairments, indicating novel approach for treating ICH.


Assuntos
Ferroptose , Microglia , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Hemorragia Cerebral/metabolismo
5.
Parasite Immunol ; 46(3): e13032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497997

RESUMO

Cryptosporidium is an opportunistic protozoan, with many species of cross-human infectivity. It causes life-threatening diarrhoea in children and CD4-defective patients. Despite its limited efficacy, nitazoxanide remains the primary anti-cryptosporidial drug. Cryptosporidium infects the intestinal brush border (intracellular-extracytoplasmic) and down-regulates pyroptosis to prevent expulsion. Romidepsin is a natural histone deacetylase inhibitor that triggers pyroptosis. Romidepsin's effect on cryptosporidiosis was assessed in immunocompromised mice via gasdermin-D (GSDM-D) immunohistochemical expression, IFN-γ, IL-1ß and IL-18 blood levels by ELISA, and via parasite scanning by modified Ziehl-Neelsen staining and scanning electron microscopy (SEM). Oocyst deformity and local cytokines were also assessed in ex vivo ileal explants. Following intraperitoneal injection of romidepsin, oocyst shedding significantly reduced at the 9th, 12th and 15th d.p.i. compared with infected-control and drug-control (nitazoxanide-treated) mice. H&E staining of intestinal sections from romidepsin-treated mice showed significantly low intestinal scoring with marked reduction in epithelial hyperplasia, villous blunting and cellular infiltrate. SEM revealed marked oocyst blebbing and paucity (in vivo and ex vivo) after romidepsin compared with nitazoxanide. Regarding pyroptosis, romidepsin triggered significantly higher intestinal GSDM-D expression in vivo, and higher serum/culture IFN-γ, IL-1ß and IL-18 levels in romidepsin-treated mice than in the control groups. Collectively, in cryptosporidiosis, romidepsin succeeded in enhancing pyroptosis in the oocysts and infected epithelium, reducing infection and shifting the brush border towards normalisation.


Assuntos
Criptosporidiose , Cryptosporidium , Depsipeptídeos , Nitrocompostos , Tiazóis , Criança , Humanos , Animais , Camundongos , Criptosporidiose/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Interleucina-18 , Piroptose
6.
J Invest Dermatol ; 144(7): 1579-1589.e8, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38219917

RESUMO

Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.


Assuntos
Afatinib , Depsipeptídeos , Sinergismo Farmacológico , Linfoma Cutâneo de Células T , Transdução de Sinais , Neoplasias Cutâneas , Depsipeptídeos/farmacologia , Depsipeptídeos/administração & dosagem , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Humanos , Animais , Camundongos , Afatinib/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
7.
Acta Pharm Sin B ; 14(1): 223-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261805

RESUMO

Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.

8.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38076968

RESUMO

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7% and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170 and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.

9.
Clin Epigenetics ; 15(1): 124, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533111

RESUMO

Peripheral T-cell lymphomas (PTCLs) are a group of highly aggressive malignancies with generally poor prognoses, and the first-line chemotherapy of PTCL has limited efficacy. Currently, several novel targeted agents, including histone deacetylase inhibitors (HDACis), have been investigated to improve the therapeutic outcome of PTCLs. Several HDACis, such as romidepsin, belinostat, and chidamide, have demonstrated favorable clinical efficacy and safety in PTCLs. More novel HDACis and new combination therapies are undergoing preclinical or clinical trials. Mutation analysis based on next-generation sequencing may advance our understanding of the correlation between epigenetic mutation profiles and relevant targeted therapies. Multitargeted HDACis and HDACi-based prodrugs hold promising futures and offer further directions for drug design.


Assuntos
Antineoplásicos , Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metilação de DNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Combinada
10.
Biomed Pharmacother ; 164: 114774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224749

RESUMO

Romidepsin, also known as NSC630176, FR901228, FK-228, FR-901228, depsipeptide, or Istodax®, is a natural molecule produced by the Chromobacterium violaceum bacterium that has been approved for its anti-cancer effect. This compound is a selective histone deacetylase (HDAC) inhibitor, which modifies histones and epigenetic pathways. An imbalance between HDAC and histone acetyltransferase can lead to the down-regulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by romidepsin indirectly contributes to the anticancer therapeutic effect by causing the accumulation of acetylated histones, restoring normal gene expression in cancer cells, and promoting alternative pathways, including the immune response, p53/p21 signaling cascades, cleaved caspases, poly (ADP-ribose) polymerase (PARP), and other events. Secondary pathways mediate the therapeutic action of romidepsin by disrupting the endoplasmic reticulum and proteasome and/or aggresome, arresting the cell cycle, inducing intrinsic and extrinsic apoptosis, inhibiting angiogenesis, and modifying the tumor microenvironment. This review aimed to highlight the specific molecular mechanisms responsible for HDAC inhibition by romidepsin. A more detailed understanding of these mechanisms can significantly improve the understanding of cancer cell disorders and pave the way for new therapeutic approaches using targeted therapy.


Assuntos
Depsipeptídeos , Neoplasias , Humanos , Histonas/metabolismo , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológico , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Small ; 19(21): e2300244, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36843276

RESUMO

Energy band structure of inorganic nano-sonosensitizers is usually optimized by surface decoration with noble metals or metal oxide semiconductors, aiming to enhance interfacial charge transfer, augment spin-flip and promote radical generation. To avoid potential biohazards of metallic elements, herein, metal-free graphitic carbon nitride quantum dots (g-C3 N4 QDs) are anchored onto hollow mesoporous TiO2 nanostructure to formulate TiO2 @g-C3 N4 heterojunction. The direct Z-scheme charge transfer significantly improves the separation/recombination dynamics of electron/hole (e- /h+ ) pairs upon ultrasound (US) stimulation, which promotes the yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH). The conjugated g-C3 N4 QDs with peroxidase-mimic activity further react with the elevated endogenous H2 O2 and aggravate oxidative stress. After loading prodrug romidepsin (RMD) in TiO2 @g-C3 N4 , stimulus-responsive drug delivery can be realized by US irradiation. The disulfide bridge of the released RMD tends to be reduced by glutathione (GSH) into a monocyclic dithiol, which arrests cell cycle in G2/M phase and evokes apoptosis through enhanced histone acetylation. Importantly, reactive oxygen species accumulation accompanied by GSH depletion is devoted to deleterious redox dyshomeostasis, leading to augmented systemic oncotherapy by eliciting antitumor immunity. Collectively, this paradigm provides useful insights in optimizing the performance of TiO2 -based nano-sonosensitizers for tackling critical diseases.


Assuntos
Óxidos , Oxirredução , Ultrassonografia , Acetilação
12.
Int J Hematol ; 118(2): 292-298, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36807258

RESUMO

Patients with recurrent peripheral T-cell lymphoma (PTCL) after allogeneic hematopoietic cell transplantation (HCT) have dismal outcomes. Nodal PTCL with the T follicular helper phenotype (PTCL-TFH) is uniquely sensitive to histone deacetylase inhibitors compared to non-TFH phenotypes. We report the case of a 19-year-old man who experienced recurrence of PTCL-TFH shortly after allogeneic HCT and subsequently achieved durable remission with romidepsin. Before HCT, the patient had refractory disease after CHOP and ESHAP chemotherapies but achieved a partial response after two cycles of romidepsin as salvage treatment. HLA-haploidentical peripheral blood stem cell transplantation was performed using conditioning with fludarabine 180 mg/sqm, melphalan 80 mg/sqm, and total body irradiation 2 Gy, and graft-versus-host disease (GVHD) prophylaxis with post-transplantation cyclophosphamide. One month after HCT, disease progression was observed in the lung. Romidepsin was readministered every 2 weeks at a reduced dose of 12 mg/sqm. After two cycles of romidepsin, the patient achieved a complete metabolic response without severe GVHD or other non-hematological toxicities. Romidepsin was discontinued after seven treatment cycles due to prolonged lymphopenia. The patient remains in complete remission 30 months after the last dose of romidepsin. Our experience suggests that romidepsin could be safely administered soon after allogeneic transplantation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células T Periférico , Humanos , Resultado do Tratamento , Linfoma de Células T Periférico/tratamento farmacológico , Recidiva Local de Neoplasia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Linfócitos T Auxiliares-Indutores/patologia
13.
J Transl Med ; 21(1): 38, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681835

RESUMO

BACKGROUND: The overall survival rate of patients with advanced ovarian cancer (OC) has remained static for several decades. Advanced ovarian cancer is known for its poor prognosis due to extensive metastasis. Epigenetic alterations contribute to tumour progression and therefore are of interest for potential therapeutic strategies. METHODS: Following our previous study, we identified that CHD4, a chromatin remodelling factor, plays a strong role in ovarian cancer cell metastasis. We investigated the clinical significance of CHD4 through TCGA and GEO database analyses and explored the effect of CHD4 expression modulation and romidepsin treatment on the biological behaviour of ovarian cancer through CCK-8 and transwell assays. Bioluminescence imaging of tumours in xenografted mice was applied to determine the therapeutic effect of romidepsin. GSEA and western blotting were used to screen the regulatory mechanism of CHD4. RESULTS: In ovarian cancer patient specimens, high CHD4 expression was associated with a poor prognosis. Loss of function of CHD4 in ovarian cancer cells induced suppression of migration and invasion. Mechanistically, CHD4 knockdown suppressed the expression of EZH2 and the nuclear accumulation of ß-catenin. CHD4 also suppressed the metastasis of ovarian cancer cells and prevented disease progression in a mouse model. To inhibit the functions of CHD4 that are mediated by histone deacetylase, we evaluated the effect of the HDAC1/2 selective inhibitor romidepsin. Our findings indicated that treatment with romidepsin suppressed the progression of metastases in vitro and in vivo. CONCLUSIONS: Collectively, our results uncovered an oncogenic function of CHD4 in ovarian cancer and provide a rationale for clinical trials of romidepsin in ovarian cancer patients.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , beta Catenina , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Epigênese Genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética
14.
Cancers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230631

RESUMO

The neoplastic "stromal" cells in giant cell tumor of bone (GCTB) harbor a mutation in the H3F3A gene, which causes alterations in the epigenome. Current systemic targeted therapies, such as denosumab, do not affect the neoplastic cells, resulting in relapse upon treatment discontinuation. Therefore, this study examined whether targeting the epigenome could eliminate the neoplastic cells from GCTB. We established four novel cell lines of neoplastic "stromal" cells that expressed the H3F3A p.G34W mutation. These cell lines were used to perform an epigenetics compound screen (n = 128), which identified histone deacetylase (HDAC) inhibitors as key epigenetic regulators in the neoplastic cells. Transcriptome analysis revealed that the neoplastic cells expressed all HDAC isoforms, except for HDAC4. Therefore, five HDAC inhibitors targeting different HDAC subtypes were selected for further studies. All GCTB cell lines were very sensitive to HDAC inhibition in both 2D and 3D in vitro models, and inductions in histone acetylation, as well as apoptosis, were observed. Thus, HDAC inhibition may represent a promising therapeutic strategy to eliminate the neoplastic cells from GCTB lesions, which remains the paramount objective for GCTB patients who require life-long treatment with denosumab.

15.
Front Immunol ; 13: 978800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052071

RESUMO

The viral transactivator Tax plays a key role in HTLV-1 reactivation and de novo infection. Previous approaches focused on the histone deacetylase inhibitor (HDACi) Valproate as a latency-reversing agent to boost Tax expression and expose infected cells to the host's immune response. However, following treatment with Valproate proviral load decreases in patients with HAM/TSP were only transient. Here, we hypothesize that other compounds, including more potent and selective HDACi, might prove superior to Valproate in manipulating Tax expression. Thus, a panel of HDACi (Vorinostat/SAHA/Zolinza, Panobinostat/LBH589/Farydak, Belinostat/PXD101/Beleodaq, Valproate, Entinostat/MS-275, Romidepsin/FK228/Istodax, and MC1568) was selected and tested for toxicity and potency in enhancing Tax expression. The impact of the compounds was evaluated in different model systems, including transiently transfected T-cells, chronically HTLV-1-infected T-cell lines, and freshly isolated PBMCs from HTLV-1 carriers ex vivo. We identified the pan-HDACi Panobinostat and class I HDACi Romidepsin as particularly potent agents at raising Tax expression. qRT-PCR analysis revealed that these inhibitors considerably boost tax and Tax-target gene transcription. However, despite this significant increase in tax transcription and histone acetylation, protein levels of Tax were only moderately enhanced. In conclusion, these data demonstrate the ability of Panobinostat and Romidepsin to manipulate Tax expression and provide a foundation for further research into eliminating latently infected cells. These findings also contribute to a better understanding of conditions limiting transcription and translation of viral gene products.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Linhagem Celular , Depsipeptídeos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Panobinostat/farmacologia , Linfócitos T , Ácido Valproico , Vorinostat
16.
J Virol ; 96(12): e0044522, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638831

RESUMO

HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.


Assuntos
Antirretrovirais , Depsipeptídeos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos , Depsipeptídeos/farmacologia , Infecções por HIV , Leucócitos Mononucleares/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Ativação Viral/efeitos dos fármacos , Replicação Viral
17.
J Zhejiang Univ Sci B ; 23(5): 392-406, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35557040

RESUMO

Antibody-mediated rejection (AMR) is one of the major causes of graft loss after transplantation. Recently, the regulation of B cell differentiation and the prevention of donor-specific antibody (DSA) production have gained increased attention in transplant research. Herein, we established a secondary allogeneic in vivo skin transplant model to study the effects of romidepsin (FK228) on DSA. The survival of grafted skins was monitored daily. The serum levels of DSA and the number of relevant immunocytes in the recipient spleens were evaluated by flow cytometry. Then, we isolated and purified B cells from B6 mouse spleens in vitro by magnetic bead sorting. The B cells were cultured with interleukin-4 (IL-4) and anti-clusters of differentiation 40 (CD40) antibody with or without FK228 treatment. The immunoglobulin G1 (IgG1) and IgM levels in the supernatant were evaluated by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the corresponding levels of messenger RNA (mRNA) and protein expression in cultured cells and the recipient spleens. The results showed that FK228 significantly improved the survival of allogeneic skin grafts. Moreover, FK228 inhibited DSA production in the serum along with the suppression of histone deacetylase 1 (HADC1) and HDAC2 and the upregulation of the acetylation of histones H2A and H3. It also inhibited the differentiation of B cells to plasma cells, decreased the transcription of positive regulatory domain-containing 1 (Prdm1) and X-box-binding protein 1 (Xbp1), and decreased the expression of phosphorylated inositol-requiring enzyme 1 α (p-IRE1α), XBP1, and B lymphocyte-induced maturation protein-1 (Blimp-1). In conclusion, FK228 could decrease the production of antibodies by B cells via inhibition of the IRE1α-XBP1 signaling pathway. Thus, FK228 is considered as a promising therapeutic agent for the clinical treatment of AMR.


Assuntos
Endorribonucleases , Transplante de Células-Tronco Hematopoéticas , Animais , Depsipeptídeos , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Proteínas Serina-Treonina Quinases , Transplante de Pele
18.
Cancer Rep (Hoboken) ; 5(7): e1581, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263030

RESUMO

BACKGROUND: Relapsed/refractory peripheral T-cell lymphoma (R/R PTCL) has a poor prognosis. Romidepsin (Ro) and brentuximab vedotin (Bv), combined with ifosfamide, carboplatin, and etoposide (ICE) has not been significantly studied in PTCL. AIM: We report outcomes of Bv-ICE in CD30 (+) and Ro-ICE in CD30 (-) R/R PTCL treated in "Blinded for peer review" Cancer Center. METHODS AND RESULTS: We retrospectively identified R/R PTCL patients treated with BV-ICE or romidepsin-ICE from May 2016 to September 2019. Out of 13 R/R PTCL patients, 6 were treated with Bv-ICE and 7 with Ro-ICE. Bv-ICE had an overall response rate (ORR) of 66.7%, with all the patients achieving a complete response. ORR was 71.4% for Ro-ICE with 57.1% of patients achieving a complete response. Two patients treated with Bv-ICE and three treated with Ro-ICE received transplantation. CONCLUSION: In our experience, treatment with Bv-ICE and Ro-ICE based on CD30 positivity is feasible and effective to treat patients with R/R PTCL.


Assuntos
Linfoma de Células T Periférico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Brentuximab Vedotin/uso terapêutico , Carboplatina/uso terapêutico , Depsipeptídeos/uso terapêutico , Etoposídeo/uso terapêutico , Humanos , Ifosfamida/uso terapêutico , Antígeno Ki-1 , Linfoma de Células T Periférico/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Retrospectivos
19.
J Med Cases ; 13(1): 15-20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35211230

RESUMO

Patients with intestinal T-cell lymphomas (ITLs) usually present with perforation of the small intestine and colon at diagnosis. At relapse or in the advanced stage, ITLs involve in other extranodal sites, but biopsy-proven lung involvement has been rarely reported. A 76-year-old male presented with sudden-onset abdominal pain, which was found to be caused by the perforation of colon. Emergency operation was carried out, and histopathological examination of the resected colon led to the diagnosis of ITL, not otherwise specified (NOS). He achieved complete metabolic remission (CMR) after eight courses of CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) chemotherapy. Two months later, computed tomography showed infiltration and ground-glass opacity in the left pulmonary area in addition to the enlargement of mediastinal and left subclavian lymph nodes, although he did not complain of any pulmonary symptoms. Histopathological findings of the biopsied samples from the pulmonary area were consistent with relapsed ITL, NOS. He achieved CMR after three courses of GDP (gemcitabine, dexamethasone, and cisplatin) chemotherapy; but 1 month after the completion of GDP chemotherapy, he relapsed again with involvement of multiple lymph nodes, not in the pulmonary area. He died owing to the progression of disease. This is the third case of ITLs with lung involvement. Active biopsy should be performed when pulmonary nodules, infiltration, or ground-glass opacity are found in ITLs. A regimen for salvage chemotherapy specifically for ITLs is not yet established, and GDP chemotherapy may be an alternative option for relapsed ITLs in addition to new agents, such as romidepsin and pralatrexate.

20.
Mol Biol Rep ; 49(5): 3519-3529, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35099714

RESUMO

BACKGROUND: Although improvement has been made in therapeutic strategies against pancreatic carcinoma, overall survival has not significantly enhanced over the past decade. Thus, the establishment of better therapeutic regimens remains a high priority. METHODS: Pancreatic cancer cell lines were incubated with romidepsin, an inhibitor of histone deacetylase, and tamoxifen, and their effects on cell growth, signaling and gene expression were analyzed. Xenografts of human pancreatic cancer CFPAC1 cells were medicated with romidepsin and tamoxifen to evaluate their effects on tumor growth. RESULTS: The inhibition of the growth of pancreatic cancer cells induced by romidepsin and tamoxifen was effectively reduced by N-acetyl cysteine and α-tocopherol, respectively. The combined treatment greatly induced reactive oxygen species production and mitochondrial lipid peroxidation, and these effects were prevented by N-acetyl cysteine and α-tocopherol. Tamoxifen enhanced romidepsin-induced cell senescence. FOXM1 expression was markedly downregulated in pancreatic cancer cells treated with romidepsin, and tamoxifen further reduced FOXM1 expression in cells treated with romidepsin. Siomycin A, an inhibitor of FOXM1, induced senescence in pancreatic cancer cells. Similar results were obtained in knockdown of FOXM1 expression by siRNA. CONCLUSION: Since FOXM1 is used as a prognostic marker and therapeutic target for pancreatic cancer, a combination of the clinically available drugs romidepsin and tamoxifen might be considered for the treatment of patients with pancreatic cancer.


Assuntos
Depsipeptídeos , Proteína Forkhead Box M1 , Neoplasias Pancreáticas , Tamoxifeno , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cisteína/metabolismo , Depsipeptídeos/farmacologia , Regulação para Baixo , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peroxidação de Lipídeos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tamoxifeno/farmacologia , alfa-Tocoferol/farmacologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA