Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
2.
Ann Med Surg (Lond) ; 86(5): 2644-2650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694326

RESUMO

Background: Our previous study demonstrated that S100 calcium binding protein A6 (S100A6) impairs tumorigenesis by Calu-6 lung cancer cells, as well as inhibit their growth. However, the role that S100A6 plays in tumor cell differentiation has not been previously explored. This study aimed to confirm the effect of S100A6 on the direction of differentiation in the human lung cancer cell linem Calu-6m based on our previous published research. Materials and methods: A S100A6-overexpressing lentiviral vector was successfully constructed in our previous study. Nude mouse tumorigenicity was then applied successfully, and 15 mice were divided into three groups (Calu-6, Calu-6/neo, Calu-6/S100A6). After 5 weeks, we detected lung cancer markers with immunohistochemistry in mice tumor tissues, including the adenocarcinoma markers, TTF-1 and NapsinA, the squamous cell carcinoma markers, P40, CK5/6 and P63, and the small cell lung cancer markers CD56, Syn, CgA, TTF-1, CK, and Ki-67. Differences among the three groups were statistically compared. Results: All the above-mentioned markers were positive in the tumor tissues of all three groups, and there were no significant differences. Conclusion: S100A6 cannot promote differentiation of the undifferentiated human lung cancer cell line, Calu-6, into adenocarcinoma, squamous, or small cell carcinoma cell lines.

3.
Cell Calcium ; 119: 102869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484433

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 µM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Proteínas S100 , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas S100/metabolismo , Proteínas Recombinantes/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Ligação Proteica , Sítios de Ligação
4.
Turk J Haematol ; 41(2): 83-90, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38426298

RESUMO

Objective: Calprotectin (CLP), S100A6, and high mobility group nucleosome-binding protein 1 (HMGN1), known as alarmins, are involved in the pathogenesis of many tumors. In this study, we aimed to investigate the relationships of serum CLP, S100A6, and HMGN1 levels with the clinical and laboratory findings of patients with multiple myeloma (MM) and their roles in the pathogenesis of MM. Materials and Methods: We measured the serum CLP, S100A6, and HMGN1 levels of 55 newly diagnosed patients and 32 healthy controls using the sandwich enzyme-linked immunosorbent assay method. The medical records of the patients were also reviewed. Results: Serum CLP, S100A6, and HMGN1 levels were significantly decreased in MM patients compared to the control group (p=0.012, p=0.001, and p=0.030, respectively). Receiver operating characteristic analysis was used to determine diagnostic cut-off values for serum CLP, S100A6, and HMGN1 of <98 ng/mL (area under the curve [AUC]: 0.663, 95% confidence interval [CI]: 0.554-0.761, p=0.009), <1174.5 pg/mL (AUC: 0.706, 95% CI: 0.598-0.799, p=0.001), and <440.18 pg/mL (AUC: 0.640, 95% CI: 0.530-0.740, p=0.03), respectively. CLP levels were found to be statistically significantly higher in patients with light chain MM (91.58±22.57 ng/mL) compared to heavy chain MM (79.42±15.83 ng/mL) (p=0.03). A negative correlation was observed between CLP and M protein, immunoglobulin G, globulin, and beta-2 microglobulin (correlation coefficients: -0.361, -0.370, -0.279, -0.300, respectively; p=0.024, p=0.06, p=0.04, p=0.0033). Conclusion: In this study, we found that serum CLP, S100A6, and HMGN1 levels were statistically lower in patients with newly diagnosed MM compared to the control group. These results suggest that CLP may bind to the paraprotein produced by heavy chain MM in the blood, causing its blood levels to be low. Additionally, low levels of HMGN1, which is involved in DNA repair, suggest that HMGN1 may contribute to the complex genetic abnormalities found in cases of MM.


Assuntos
Alarminas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/sangue , Mieloma Múltiplo/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Alarminas/sangue , Idoso , Complexo Antígeno L1 Leucocitário/sangue , Curva ROC , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Proteína HMGN1/sangue , Adulto , Proteína A6 Ligante de Cálcio S100/sangue , Proteínas de Ciclo Celular
5.
Cells ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334598

RESUMO

(1) Background: Inflammatory responses are implicated in embryo implantation, decidualization, pregnancy maintenance and labor. Both embryo implantation and decidualization are essential to successful pregnancy in rodents and primates. S100A6 is involved in inflammation, tumor development, apoptosis and calcium homeostasis. S100A6 is strongly expressed in mouse decidua, but the underlying mechanisms of how S100A6 regulates implantation and decidualization are poorly defined. (2) Methods: Mouse endometrial stromal and epithelial cells are isolated from day 4 pseudopregnant mouse uteri. Both immunofluorescence and Western blotting are used to analyze the expression and localization of proteins. The molecular mechanism is verified in vitro by Western blotting and the quantitative polymerase chain reaction. (3) Results: From days 4 to 8 of pregnancy, S100A6 is specifically expressed in mouse subluminal stromal cells. Blastocyst-derived lactic acid induces AA secretion by activating the luminal epithelial p-cPLA2. The epithelial AA induces stromal S100A6 expression through the COX2/PGI2/PPAR δ pathway. Progesterone regulates S100A6 expression through the progesterone receptor (PR). S100A6/RAGE signaling can regulate decidualization via EGFR/ERK1/2 in vitro. (4) Conclusions: S100A6, as an inflammatory mediator, is important for mouse implantation and decidualization.


Assuntos
Decídua , Útero , Gravidez , Feminino , Animais , Camundongos , Ácido Araquidônico/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , Blastocisto
6.
Cancer Lett ; 587: 216709, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350547

RESUMO

Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/farmacologia , Metástase Linfática , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Proteínas de Ciclo Celular/metabolismo
7.
Antioxid Redox Signal ; 41(1-3): 138-151, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299557

RESUMO

Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.


Assuntos
Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Dioxigenases/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Metástase Neoplásica , Hipóxia Celular/genética , Transcrição Gênica
8.
Biomolecules ; 13(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37759746

RESUMO

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.


Assuntos
Fatores Imunológicos , Proteínas S100 , Humanos , Animais , Proteína A6 Ligante de Cálcio S100 , Simulação de Acoplamento Molecular , Sítios de Ligação , Proteínas de Ciclo Celular
9.
Biomark Res ; 11(1): 78, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670392

RESUMO

S100A6 (also called calcyclin) is a Ca2+-binding protein that belongs to the S100 protein family. S100A6 has many functions related to the cytoskeleton, cell stress, proliferation, and differentiation. S100A6 also has many interacting proteins that are distributed in the cytoplasm, nucleus, cell membrane, and outside the cell. Almost all these proteins interact with S100A6 in a Ca2+-dependent manner, and some also have specific motifs responsible for binding to S100A6. The expression of S100A6 is regulated by several transcription factors (such as c-Myc, P53, NF-κB, USF, Nrf2, etc.). The expression level depends on the specific cell type and the transcription factors activated in specific physical and chemical environments, and is also related to histone acetylation, DNA methylation, and other epigenetic modifications. The differential expression of S100A6 in various diseases, and at different stages of those diseases, makes it a good biomarker for differential diagnosis and prognosis evaluation, as well as a potential therapeutic target. In this review, we mainly focus on the S100A6 ligand and its transcriptional regulation, molecular function (cytoskeleton, cell stress, cell differentiation), and role as a biomarker in human disease and stem cells.

10.
Heliyon ; 9(8): e18947, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609402

RESUMO

Objectives: Myelodysplastic syndromes (MDS) are a group of myeloid malignancies characterized by peripheral blood cytopenia and hematopoietic dysplasia that often progress to acute myeloid leukemia (AML). Increased apoptosis of normal hematopoietic cells and decreased apoptosis of malignant clonal hematopoietic cells in patients with MDS is some of the mechanisms leading to ineffective hematopoietic cells in the bone marrow. S100 calcium-binding protein A6 (S100A6) is upregulated in many malignancies. The overexpression of S100A6 in these malignancies has been associated with proliferation, migration, and invasion phenotypes in cancer cells, and we aimed to investigate the expression of S100A6 in CD34+ cells and the relationship between S100A6 expression and apoptosis of CD34+ cells in high-risk patients with MDS. Methods: We measured S100A6 mRNA expression in bone marrow (BM) CD34+ cells from high-risk patients with MDS using RT-PCR. Next, we examined S100A6 expression in CD34+ cells using flow cytometry. We also analyzed the correlation between CD34+ cell apoptosis and S100A6 expression in high-risk patients with MDS. Results: Our data showed increased S100A6 mRNA expression in CD34+ cells in patients with MDS (1.05 ± 0.69 vs. 0.17 ± 0.12; P<0.01). The expression of S100A6 in BM CD34+ cells also increased (58.40 ± 13.18 vs. 45.83 ± 15.01). The expression of S100A6 in CD34+ cells and apoptosis of CD34+ cells were negatively correlated in patients (r = -0.75; P < 0.01). Conclusions: Collectively, S100A6 may be a potential marker of CD34+ cells in high-risk patients with MDS and may participate in the pathological behaviors of CD34+ cells, such as evasion of apoptosis. Thus, S100A6 may be a potential target for eliminating minimal residual disease.

11.
Clin Res Hepatol Gastroenterol ; 47(8): 102200, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37643692

RESUMO

Pancreatic cancer (PAC) remains one of the most lethal malignant neoplasms, which is diagnosed at an advanced stage and thus lose the chance for curative resection. Here, we further probed PAC with a comprehensive multi-omics approach. Using single-cell RNA sequencing, we provided an integrated analysis of ductal cell subpopulations over the Leiden algorithm to identify two mian subcluster: S100A6 + cells and FXYD2 + cells. The gene set enrichment analysis results show that the two subtypes focused on different pathways related to tumor development. Furthermore, we integrated bulk and single-cell RNA sequencing datasets to generate and validate the prognostic signatures of the overall survival (OS) in PAC patients and S100A6 + cells were significantly enriched in high-risk groups which had a poor prognosis. Collectively, this research expands our understanding of ductal cell and provides a new reliable prognosis signature in PAC.

12.
Biomolecules ; 13(7)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509175

RESUMO

S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.


Assuntos
Neoplasias Hepáticas , Proteína A6 Ligante de Cálcio S100 , Animais , Feminino , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Mamíferos/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo
13.
Curr Issues Mol Biol ; 45(4): 2881-2894, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185712

RESUMO

Ocular diseases have a strong impact on individuals, the effects of which extend from milder visual impairment to blindness. Due to this and to their prevalence, these conditions constitute important health, social and economic challenges. Thus, improvements in their early detection and diagnosis will help dampen the impact of these conditions, both on patients and on healthcare systems alike. In this sense, identifying tear biomarkers could establish better non-invasive approaches to diagnose these diseases and to monitor responses to therapy. With this in mind, we developed a solid phase capture assay, based on antibody microarrays, to quantify S100A6, MMP-9 and CST4 in human tear samples, and we used these arrays to study tear samples from healthy controls and patients with Sjögren's Syndrome, at times concomitant with rheumatoid arthritis. Our results point out that the detection of S100A6 in tear samples seems to be positively correlated to rheumatoid arthritis, consistent with the systemic nature of this autoinflammatory pathology. Thus, we provide evidence that antibody microarrays may potentially help diagnose certain pathologies, possibly paving the way for significant improvements in the future care of these patients.

14.
Breast Cancer Res ; 25(1): 55, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217945

RESUMO

BACKGROUND: S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS: Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS: S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION: These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
15.
Brain Behav ; 13(3): e2897, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748983

RESUMO

INTRODUCTION: Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood-brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. METHODS: We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5-azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. RESULT: The promoter methylation and 5-azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration-dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. CONCLUSION: We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Proteínas S100 , Humanos , Proteínas S100/genética , Proteínas S100/metabolismo , Proteínas de Ciclo Celular/genética , Epigênese Genética , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Autoanticorpos/metabolismo , Azacitidina
16.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674873

RESUMO

S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.


Assuntos
Neoplasias , Proteínas S100 , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Ligantes , Proteínas S100/química , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais
17.
Inflammation ; 46(2): 534-554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36484925

RESUMO

Noninfectious liver injury, including the effects of chemical material, drugs and diet, is a major cause of liver diseases worldwide. In chemical and drugs-induced liver injury, innate inflammatory responses are mediated by extracellular danger signals. The S100 protein can act as danger signals, which can promote the migration and chemotaxis of immune cells, promote the release of various inflammatory cytokines, and regulate the body's inflammatory and immune responses. However, the role of S100A6 in inflammatory response in chemical and drugs-induced sterile liver injury remains unclear. We constructed the model of sterile liver injury induced by carbon tetrachloride (CCl4)/Paracetamol (APAP) and performed RNA sequencing (RNA-seq) on the liver tissues after injury (days 2 and 5). We analyzed inflammatory protein secretion in the liver tissue supernatant by enzyme-linked immunosorbent assay (ELISA), determined the inflammation response by bioinformatic analysis during sterile liver injury, and assessed mononuclear/macrophage infiltration by immunohistochemistry and flow cytometry. Immunohistochemistry was used to analyze the location of S100A6. We conducted inflammatory factor expression analysis and molecular mechanistic studies in Kupffer cells (KCs) induced by S100A6 using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot in vitro experiments. We performed chemokine CCL2 expression analysis and molecular mechanism studies using the same method. We used a Transwell assay to show the infiltration of mononuclear/macrophage. We here observed that aggravated inflammatory response was shown in CCl4 and APAP-administrated mice, as evidenced by enhanced production of inflammatory cytokines (TNF-α, IL-1ß), and elevated mononuclear/macrophage infiltration and activation of immunity. The expression of S100A6 was significantly increased on day 2 after sterile liver injury, which is primarily produced by injured liver cells. Mechanistic studies established that S100A6 activates Kupffer cells (KCs) via the p-P38, p-JNK and P65 pathways to induce inflammation in vitro. Furthermore, TNF-α can stimulate liver cells via the p-P38 and p-JNK pathways to produce CCL2 and promote the infiltration of mononuclear/macrophage. In summary, we showed that S100A6 plays an important role in regulating inflammation, thus influencing sterile liver injury. Our findings provide novel evidence that S100A6 can as a danger signal that contributes to pro-inflammatory activation through p-P38 and p-JNK pathways in CCl4 and APAP-induced sterile liver injury in mice. In addition, the inflammatory factor TNF-α induces a large amount of CCL2 production in normal liver cells surrounding the injured area through a paracrine action, which is chemotactic for blood mononuclear/macrophage infiltration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células de Kupffer , Animais , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/metabolismo
18.
J Cell Biochem ; 124(2): 205-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502516

RESUMO

Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes , Perfilação da Expressão Gênica , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas de Ciclo Celular/genética
19.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232318

RESUMO

The polarization of tumor-associated macrophages (TAMs) plays a key role in tumor development and immunotherapy in colorectal cancer (CRC) patients. However, the impact of apoptosis on TAM polarization and immunotherapy efficacy in patients with different mismatch repair statuses (MMR) remains unclear. Here, we constructed an atlas of macrophage and found a higher rate of infiltration of M2-like TAM subpopulation in pMMR CRC tumor tissues compared with that in dMMR CRC tumor tissues. Importantly, a lower infiltration rate of M2c-like TAMs was associated with immunotherapy response. The M2 polarization trajectory revealed the apoptosis of M2c-like TAMs in dMMR while the differentiation of M2c-like TAMs in pMMR, implying a higher polarization level of M2 in pMMR. Furthermore, we found that a high expression of S100A6 induces the apoptosis of M2c-like TAMs in dMMR. In conclusion, we identified apoptotic TAM subpopulations in the M2 polarization trajectory and found that apoptosis caused by the high expression of S100A6 reduces their infiltration in tumors as well as the level of M2 polarization and contributes to a favorable immunotherapy response. These findings provide new insights into the potential role of apoptosis in suppressing tumors and enhancing immunotherapeutic efficacy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Humanos , Imunoterapia , Macrófagos/metabolismo
20.
Stem Cell Rev Rep ; 18(8): 2699-2708, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35796891

RESUMO

Adult or tissue stem cells are present in various tissues of the organism where they reside in a specific environment called the niche. Owing to their ability to generate a progeny that can proliferate and differentiate into specialized cell types, adult stem cells constitute a source of new cells necessary for tissue maintenance and/or regeneration. Under normal conditions they divide with a frequency matching the pace of tissue renewal but, following tissue damage, they can migrate to the site of injury and expand/divide intensively to facilitate tissue repair. For this reason much hope is being placed on the use of adult stem cells in regenerative therapies, including tissue engineering. Identification and characterization of tissue stem cells has been a laborious process due to their scarcity and lack of universal markers. Nonetheless, recent studies, employing various types of transcriptomic analyses, revealed some common trends in gene expression pattern among stem cells derived from different tissues, suggesting the importance of certain genes/proteins for the unique properties of these cells. S100A6, a small calcium binding protein, has been recognized as an important factor influencing cell proliferation and differentiation. Accumulating results show that S100A6 is a constituent of adult stem cells and, in some cases, may even be considered as their marker. Thus, in this review we summarize literature data concerning the presence of S100A6 in adult and cancer stem cells and speculate on its potential role and usefulness as a marker of these cells.


Assuntos
Células-Tronco Adultas , Neoplasias , Humanos , Biomarcadores , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Proteína A6 Ligante de Cálcio S100 , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA