Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Arch Occup Environ Health ; 97(2): 121-132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110551

RESUMO

OBJECTIVE: The effect marker club cell protein (CC16) is secreted by the epithelium of the small respiratory tract into its lumen and passes into the blood. Increased amounts of CC16 in serum are observed during acute epithelial lung injury due to air pollutants. CC16 in serum was determined as part of this cross-sectional study in underground potash miners on acute and chronic health effects from exposures to diesel exhaust and blasting fumes. METHODS: Nitrogen oxides, carbon monoxide, and diesel particulate matter were measured in 672 workers at a German potash mining site on a person-by-person basis over an early shift or midday shift, together with CC16 serum concentrations before and after the respective shift. CC16 concentrations and CC16 shift-differences were evaluated with respect to personal exposure measurements and other quantitative variables by Spearman rank correlation coefficients. CC16 shift-differences were modeled using multiple linear regression. Above-ground workers as reference group were compared to the exposed underground workers. RESULTS: Serum concentrations of CC16 were influenced by personal characteristics such as age, smoking status, and renal function. Moreover, they showed a circadian rhythm. While no statistically significant effects of work-related exposure on CC16 concentrations were seen in never smokers, such effects were evident in current smokers. CONCLUSION: The small airways of current smokers appeared to be vulnerable to the combination of measured work-related exposures and individual exposure to smoking. Therefore, as health protection of smokers exposed to diesel exhaust and blasting fumes, smoking cessation is strongly recommended.


Assuntos
Misturas Complexas , Exposição Ocupacional , Emissões de Veículos , Humanos , Estudos Transversais , Mineração , Exposição Ocupacional/efeitos adversos , Sistema Respiratório
2.
Biomark Insights ; 18: 11772719231156308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814995

RESUMO

Background: Club cell secretory protein (CC16) has demonstrated utility as a lung-specific biomarker in predicting mortality in acute respiratory distress syndrome (ARDS). These findings have been observed in pre-clinical trials and a re-analysis of a large, randomized controlled trial of ARDS (Fluid and Catheter Treatment Trial (FACTT)). Objectives: The purpose of this study was to validate previous findings by evaluating CC16 level as a mortality predictor in patients from the albuterol to treat acute lung injury (ALTA) trial. Design and Method: In this secondary biomarker analysis, plasma CC16 level was measured from 100 ALTA subjects using enzyme-linked immunosorbent assay (ELISA). The rate of mortality was assessed in patients with high (⩾45 ng/mL) versus low CC16 (<45 ng/mL) levels. This cut-off level was applied based on our previous analysis from FACTT trial. Significance was assessed using Kaplan-Meier curves and a log-rank test. Results: Subjects were an average of 50 years old and 46% of them were females. Patients with high CC16 levels had higher 90-day mortality compared to those with low CC16 levels, (37.73% vs 8.95%, P < .001). Other clinical outcomes including ICU-free days, ventilator-free days, and organ failure free days were significantly different between the groups (All P < .05). Conclusion: In this validation study, we demonstrated that ARDS patients with high plasma CC16 concentration had a higher mortality rate than those with low CC16 levels, confirming previous findings that CC16 levels are associated with ARDS mortality.

3.
Mol Ther ; 31(5): 1346-1364, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635966

RESUMO

Acute lung injury (ALI) is still associated with high mortality. Growing evidence suggests that Club Cell Protein 16 (CC16) plays a protective role against ALI. However, the doses of recombinant CC16 (rCC16) used in preclinical studies are supraphysiological for clinical applications. Extracellular vesicles (EVs) are nanovesicles endogenously generated by mammalian cells. Our study demonstrated that CC16 is released via small EVs and EV-encapsulated CC16 (sEV-CC16) and has anti-inflammatory activities, which protect mice from lipopolysaccharide (LPS) or bacteria-induced ALI. Additionally, sEV-CC16 can activate the DNA damage repair signaling pathways. Consistent with this activity, we observed more severe DNA damage in lungs from Cc16 knockout (KO) than wild-type (WT) mice. Mechanistically, we elucidated that CC16 suppresses nuclear factor κB (NF-κB) signaling activation by binding to heat shock protein 60 (HSP60). We concluded that sEV-CC16 could be a potential therapeutic agent for ALI by inhibiting the inflammatory and DNA damage responses by reducing NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Mamíferos
4.
Annu Rev Med ; 74: 427-441, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36450281

RESUMO

Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.


Assuntos
Pneumopatias , Humanos , Pneumopatias/tratamento farmacológico , Pulmão/metabolismo , Proteínas/metabolismo
6.
Front Immunol ; 13: 1055811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457995

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2
7.
Crit Care Explor ; 4(6): e0711, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35651737

RESUMO

Club cell secretory protein (CC16) is a protein with potential utility as a lung-specific biomarker for acute respiratory distress syndrome. The purpose of this study was to characterize CC16 in plasma from patients enrolled in the Fluid and Catheter Treatment Trial (FACTT) to determine the prognostic value for patient outcomes in our subgroup of FACTT patients. DESIGN: A secondary biomarker analysis of a prospective randomized-controlled trial. The primary outcome was area under the receiver operating characteristic (AUROC) of CC16 for prediction of 90-day mortality. Secondary outcomes included differences in mortality, length of stay, and ventilator-free days (VFDs) between patients with high and low CC16. Statistical analyses were performed with IBM SPSS Statistics. SETTING: Single-center laboratory analysis. SUBJECTS: Plasma samples from 68 FACTT subjects and 20 healthy controls. INTERVENTIONS: CC16 was measured in patient plasma samples by enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS: Subjects were an average of 48 years old (sd, 16.7 yr old) and 51.5% male. AUROC analysis of CC16 on day 1 showed an area under the ROC curve of 0.78 for prediction of mortality (odds ratio, 1.011; 95% CI, 1.003-1.021) with an optimal cutoff value of 45 ng/mL. Patients in the low CC16 group (<45 ng/mL) had lower mortality (7.5 vs 50.0%; p < 0.001) and similar VFD (11.9 vs 13.2; p = 0.638). When stratified by CC16 concentration, there was no difference between mortality in the fluid liberal (36.4 vs 58.8%; p = 0.256) or conservative (4.3 vs 11.8%; p = 0.366) groups. CONCLUSIONS: CC16 demonstrated an acceptable AUROC for prediction of patient mortality with a cut point of 45 ng/mL. Patients with high CC16 on day 1 had worse outcomes compared with those with low CC16, suggesting a prognostic role for this lung-specific biomarker.

8.
Biochem Biophys Res Commun ; 604: 151-157, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35305419

RESUMO

As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.


Assuntos
Bronquíolos , Citometria de Fluxo , Perfilação da Expressão Gênica , RNA Mensageiro , Uteroglobina , Bronquíolos/citologia , Citometria de Fluxo/métodos , Formaldeído , Perfilação da Expressão Gênica/métodos , Humanos , Inclusão em Parafina , RNA Mensageiro/isolamento & purificação , Fixação de Tecidos/métodos , Transcriptoma , Uteroglobina/química
9.
Pharmacol Ther ; 236: 108112, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35016921

RESUMO

Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.


Assuntos
Citocinas , Sistema Respiratório , Secretoglobinas , Citocinas/metabolismo , Humanos , Sistema Respiratório/metabolismo , Secretoglobinas/genética , Secretoglobinas/metabolismo
10.
Allergy ; 77(3): 767-777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343347

RESUMO

The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.


Assuntos
Citocinas , Imunidade , Citocinas/metabolismo , Humanos , Secretoglobinas/metabolismo
11.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768890

RESUMO

Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1ß, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.


Assuntos
Inflamação/metabolismo , Pneumonia Bacteriana/metabolismo , Uteroglobina , Apoptose , Brônquios/citologia , Brônquios/microbiologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Imunidade Inata , Klebsiella pneumoniae , Pulmão/microbiologia , Pulmão/patologia , NF-kappa B/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
12.
Toxics ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564359

RESUMO

Secretoglobin family 1A member 1 (SCGB1A1) alternatively known as club cell protein 16 is a protective pneumo-protein. Decreased serum levels of SCGB1A1 have been associated with tobacco smoke induced chronic obstructive pulmonary disease (TS-COPD). Exposure to biomass smoke (BMS) is an important COPD risk factor among women in low and lower-middle income countries. Therefore, in a cross-sectional study (n = 50/group; total 200 subjects) we assessed serum SCGB1A1 levels in BMS-COPD subjects (11 male, 39 female) compared to TS-COPD (all male) along with TS-CONTROL (asymptomatic smokers, all male) and healthy controls (29 male, 21 female) in an Indian population. Normal and chronic bronchitis like bronchial mucosa models developed at the air-liquid interface using human primary bronchial epithelial cells (3 donors, and three replicates per donor) were exposed to cigarette smoke condensate (CSC; 0.25, 0.5, and 1%) to assess SCGB1A1 transcript expression and protein secretion. Significantly (p < 0.0001) decreased serum SCGB1A1 concentrations (median, interquartile range, ng/mL) were detected in both BMS-COPD (1.6; 1.3-2.4) and TS-COPD (1.8; 1.4-2.5) subjects compared to TS-CONTROL (3.3; 2.9-3.5) and healthy controls (5.1; 4.5-7.2). The levels of SCGB1A1 were positively correlated (r = 0.7-0.8; p < 0.0001) with forced expiratory volume in 1 s, forced vital capacity, their ratios, and exercise capacity. The findings are also consistent within the BMS-COPD sub-group as well. Significantly (p < 0.03) decreased SCGB1A1 concentrations were detected with severity of COPD, dyspnea, quality of life, and mortality indicators. In vitro studies demonstrated significantly (p < 0.05) decreased SCGB1A1 transcript and/or protein levels following CSC exposure. Circulating SCGB1A1 levels may therefore also be considered as a potent marker of BMS-COPD and warrant studies in larger independent cohorts.

13.
Front Immunol ; 12: 630096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717159

RESUMO

Background: Distal airway metaplasia may precede honeycombing in progressive fibrosing interstitial lung disease (ILD). The SCGB1A1+ bronchiolar-specific club cell may play a role in this aberrant regenerative process. Objective: To assess the presence of club cells in the small airways of patients suffering from ILD. Methods: Small airways (internal diameter <2 mm) in lung samples [surgical lung biopsy (SLB) and/or transbronchial lung cryobiopsy (TBLC)] from 14 patients suffering from ILD and 10 controls were morphologically assessed and stained for SCGB1A1. SCGB1A1 was weighted by epithelial height as a marker of airway generation (SCGB1A1/EH). Correlations between clinical, functional, and high-resolution CT (HRCT) prognostic factors and histomorphometry were assessed. Results: Small airways from samples with ILD patterns were significantly less dense in terms of SCGB1A1+ cells [0.064 (0.020-0.172)] as compared to controls' sample's small airways [0.393 (0.082-0.698), p < 0.0001]. Usual interstitial pneumonia (UIP) patterns most frequently contained small airways with limited or absent SCGB1A1 expression (SCGB1A1/EH <0.025): UIP (18/33; 55%) as compared with non-UIP patterns (4/31; 13%) or controls (0/29; 0%): p < 0.0001. In addition, correlations with HRCT indicated a significant negative relationship between SCGB1A1 and bronchiectasis as a feature of bronchiolization (Rho -0.63, p < 0.001) and a positive relationship with both forced vital capacity (FVC) and Hounsfield unit (HU)-distribution pattern in kurtosis (Rho 0.38 and 0.50, respectively, both p < 0.001) as markers of fibrotic changes. Conclusion: Compared with controls, the small airways of patients with ILD more often lack SCGB1A1, especially so in UIP. Low densities of SCGB1A1-marked cells correlate with bronchiectasis and fibrotic changes. Further research investigating SCGB1A1 staining as a pathological feature of the bronchiolization process is merited.


Assuntos
Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Metaplasia/patologia , Adulto , Idoso , Bronquiectasia/patologia , Bronquíolos/patologia , Células Epiteliais/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Metaplasia/fisiopatologia , Pessoa de Meia-Idade , Estudos Prospectivos , Fumar , Uteroglobina/metabolismo
14.
J Clin Med ; 9(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327505

RESUMO

Club cell secretory protein (CC16) is encoded by the SCGB1A1 gene. It is also known as CC10, secretoglobin, or uteroglobin. CC16 is a 16 kDa homodimeric protein secreted primarily by the non-ciliated bronchial epithelial cells, which can be detected in the airways, circulation, sputum, nasal fluid, and urine. The biological activities of CC16 and its pathways have not been completely understood, but many studies suggest that CC16 has anti-inflammatory and anti-oxidative effects. The human CC16 gene is located on chromosome 11, p12-q13, where several regulatory genes of allergy and inflammation exist. Studies reveal that factors such as gender, age, obesity, renal function, diurnal variation, and exercise regulate CC16 levels in circulation. Current findings indicate CC16 not only may reflect the pathogenesis of pulmonary diseases, but also could serve as a potential biomarker in several lung diseases and a promising treatment for chronic obstructive pulmonary disease (COPD). In this review, we summarize our current understanding of CC16 in pulmonary diseases.

15.
Front Immunol ; 11: 584310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117399

RESUMO

Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM's role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Uteroglobina/imunologia , Uteroglobina/metabolismo , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo/imunologia , Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
16.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L456-L463, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322430

RESUMO

SCGB1A1 (secretoglobin family 1A member 1) is an important protein for multiple pulmonary diseases, especially asthma, chronic obstructive pulmonary disease, and lung cancer. One single-nucleotide polymorphism (SNP) at 5'-untranslated region of SCGB1A1, rs3741240, has been suggested to be associated with reduced protein expression and further asthma susceptibility. However, it was still unclear whether there were other cis-regulatory elements for SCGB1A1 that might further contribute to pulmonary diseases. Allele-specific expression (ASE) is a novel approach to identify the functional region in human genome. In the present study, we measured ASE on rs3741240 in lung tissues and observed a consistent excess of G allele over A (P < 10-6), which indicated that this SNP or the one(s) in linkage disequilibrium (LD) could regulate SCGB1A1 expression. By analyzing 1000 Genomes Project data for Chinese, one SNP locating ~10.2 kb away and downstream of SCGB1A1, rs2509956, was identified to be in strong LD with rs3741240. Reporter gene assay confirmed that both SNPs could regulate gene expression in the lung cell. By chromosome conformation capture, it was verified that the region surrounding rs2509956 could interact with SCGB1A1 promoter region and act as an enhancer. Through chromatin immunoprecipitation and overexpression assay, the related transcription factor RELA (RELA proto-oncogene, NF-kB subunit) was recognized to bind the region spanning rs2509956. Our work identified a novel long-distance cis-regulatory SNP for SCGB1A1, which might contribute to multiple pulmonary diseases.


Assuntos
Asma/genética , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição RelA/genética , Uteroglobina/genética , Alelos , Asma/metabolismo , Asma/patologia , Biologia Computacional/métodos , Expressão Gênica , Genes Reporter , Predisposição Genética para Doença , Genoma Humano , Humanos , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proto-Oncogene Mas , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Transcrição RelA/metabolismo , Uteroglobina/metabolismo
17.
BMC Ophthalmol ; 18(1): 57, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482497

RESUMO

BACKGROUND: The pathophysiological changes occurring in the trabecular meshwork in primary open angle glaucoma are poorly understood, but are thought to include increased extracellular matrix deposition, trabecular meshwork cell apoptosis, inflammation, trabecular meshwork calcification and altered protein composition of the aqueous humor. Although many proteins are present in aqueous humor, relatively few have been studied extensively, and their potential roles in primary open angle glaucoma are unknown. METHODS: Analyte concentrations in aqueous humor from 19 primary open angle glaucoma and 18 cataract patients were measured using a multiplex immunoassay. Fisher's exact test was used to assess statistical significance between groups, and correlations of analyte concentrations with age, intraocular pressure, pattern standard deviation, mean deviation, cup-to-disc ratio and disease duration since commencing treatment were tested by Spearman's method. RESULTS: CHI3L1, FLRG, HGF, MIF, P-selectin and Uteroglobin were detected in more than 50% of samples of one or both patient groups, some of which have not previously been quantified in aqueous humor. In the glaucoma but not the cataract group, significant correlations were determined with age for Uteroglobin/SCGB1A1 (rs = 0.805, p < 0.0001) and FLRG (rs = 0.706, p = 0.0007). Furthermore, HGF correlated significantly with disease duration (rs = - 0.723, p = 0.0007). There were no differences in analyte concentrations between groups, and no other significant associations with clinical descriptors that passed correction for multiple testing. CONCLUSIONS: The correlations of uteroglobin and FLRG with age in primary open angle glaucoma but not cataract may suggest a heightened requirement for anti-inflammatory (uteroglobin) or anti-calcification (FLRG) activity in the ageing glaucomatous trabecular meshwork.


Assuntos
Humor Aquoso/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Uteroglobina/metabolismo , Fatores Etários , Idoso , Catarata/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade
18.
Stem Cell Reports ; 7(5): 817-825, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27773701

RESUMO

Recent studies have implicated keratin 5 (KRT5)+ cells in repopulation of damaged lung tissue following severe H1N1 influenza virus infection. However, the origins of the cells repopulating the injured alveolar region remain controversial. We sought to determine the cellular dynamics of lung repair following influenza infection and define whether nascent KRT5+ cells repopulating alveolar epithelium were derived from pre-existing alveolar or airway progenitor cells. We found that the wound-healing response begins with proliferation of SOX2+ SCGB1A1- KRT5- progenitor cells in airways. These cells generate nascent KRT5+ cells as an early response to airway injury and yield progeny that colonize damaged alveolar parenchyma. Moreover, we show that local alveolar progenitors do not contribute to nascent KRT5+ cells after injury. Repopulation of injured airway and alveolar regions leads to proximalization of distal airways by pseudostratified epithelium and of alveoli by airway-derived epithelial cells that lack the normal characteristics of mature airway or alveolar epithelium.


Assuntos
Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Queratina-5/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/virologia , Animais , Biomarcadores , Linhagem da Célula , Autorrenovação Celular/genética , Vírus da Influenza A Subtipo H1N1 , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Mucosa Respiratória/virologia , Fatores de Transcrição SOXB1/genética
19.
Clin Oral Implants Res ; 27(12): e190-e198, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25864924

RESUMO

OBJECTIVES: The peri-implant epithelium (PIE) plays an important role in the prevention against initial stage of inflammation. To minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the PIE. The aim of this study was to investigate the characteristic gene expression profile of PIE as compared to junctional epithelium (JE) using laser microdissection and microarray analysis. METHODS: Left upper first molars of 4-week-old rat were extracted, and titanium alloy implants were placed. Four weeks after surgery, samples were harvested by laser microdissection, and total RNA samples were isolated. Comprehensive analyses of genes expressed in the JE and PIE were performed using microarray analysis. Confirmation of the differential expression of selected genes was performed by quantitative real-time polymerase chain reaction and immunohistochemistry. RESULTS: The microarray analysis showed that 712 genes were more than twofold change upregulated in the PIE compared with the JE. Genes Scgb1a1 were significantly upregulated more than 19.1-fold, Lpo more than 19.0-fold, and Gbp2 more than 8.9-fold, in the PIE (P < 0.01). Immunohistochemical localization of SCGB1A1, LPO, and GBP2 was observed in PIE. CONCLUSION: The present results suggested that genes Scgb1a1, Lpo, and Gbp2 are characteristically expressed in the PIE.


Assuntos
Implantação Dentária Endóssea , Inserção Epitelial/metabolismo , Epitélio/metabolismo , Proteínas de Ligação ao GTP/genética , Lactoperoxidase/genética , Regulação para Cima , Uteroglobina/genética , Animais , Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Lactoperoxidase/metabolismo , Microdissecção e Captura a Laser , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Peri-Implantite/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Uteroglobina/metabolismo
20.
Genet Epidemiol ; 38(6): 572-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044411

RESUMO

Single nucleotide polymorphisms have been found to be associated with pulmonary function using genome-wide association studies. However, lung function is a complex trait that is likely to be influenced by multiple gene-gene interactions besides individual genes. Our goal is to build a cellular network to explore the relationship between pulmonary function and genotypes by combining SNP level and network analyses using longitudinal lung function data from the Framingham Heart Study. We analyzed 2,698 genotyped participants from the Offspring cohort that had an average of 3.35 spirometry measurements per person for a mean length of 13 years. Repeated forced expiratory volume in one second (FEV1 ) and the ratio of FEV1 to forced vital capacity (FVC) were used as outcomes. Data were analyzed using linear-mixed models for the association between lung function and alleles by accounting for the correlation among repeated measures over time within the same subject and within-family correlation. Network analyses were performed using dmGWAS and validated with data from the Third Generation cohort. Analyses identified SMAD3, TGFBR2, CD44, CTGF, VCAN, CTNNB1, SCGB1A1, PDE4D, NRG1, EPHB1, and LYN as contributors to pulmonary function. Most of these genes were novel that were not found previously using solely SNP-level analysis. These novel genes are involving the transforming growth factor beta (TGFB)-SMAD pathway, Wnt/beta-catenin pathway, etc. Therefore, combining SNP-level and network analyses using longitudinal lung function data is a useful alternative strategy to identify risk genes.


Assuntos
Estudo de Associação Genômica Ampla , Pulmão/fisiologia , Modelos Genéticos , Adulto , Alelos , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA