Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.135
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150480, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094229

RESUMO

Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.

2.
Drug Dev Res ; 85(5): e22240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105636

RESUMO

In an effort to develop new and effective therapeutic agents for Alzheimer's disease, a series of hydrazone derivatives bearing piperidine rings have been designed and synthesized. The chemical structures of the compounds were characterized by various spectroscopic techniques. In vitro antioxidant and cholinesterase activities of the compounds were evaluated. Among the compounds, N12 exhibited the most antioxidant activity in all methods (CUPRAC, FRAP, DPPH, ABTS). In vitro acetylcholinesterase (AChE) activity results of the compounds showed good IC50 values between 14.124 ± 0.084 and 49.680 ± 0.110 µM were obtained (IC50 = 38.842 ± 0.053 µM for Donepezil). Among the compounds, N7 and N6 are much more effective derivatives than the standard compound donepezil with IC50 values of 14.124 ± 0.084 and 17.968 ± 0.072 µM, respectively. In vitro, butyrylcholinesterase (BChE) inhibition values of the compounds were between 13.505 ± 0.025 and 52.230 ± 0.027 µm. Among the compounds, N6 has the highest BChE inhibition with an IC50 value of 13.505 µm in the series. The cytotoxicity and AChE inhibitory activity of the compounds on SH-SY5Y cell lines were also evaluated. Kinetic studies were also performed to determine the behavior of the compounds as competitive or noncompetitive inhibitors. The binding modes of N6, which was determined to be highly effective according to in vitro analyses, with AChE and BChE were investigated using molecular docking studies, and the stability of the complexes was determined by molecular dynamics simulations. These findings indicated that AChE and BChE enzymes maintained their overall structural stability and compactness during interactions with compound N6.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Hidrazonas , Simulação de Acoplamento Molecular , Piperidinas , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Hidrazonas/química , Piperidinas/farmacologia , Piperidinas/química , Piperidinas/síntese química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Humanos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Relação Estrutura-Atividade , Modelos Moleculares
3.
Sci Total Environ ; 951: 175422, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39128528

RESUMO

Given their relatively low persistence and mammalian toxicity, neonicotinoid pesticides have been extensively used worldwide and are omnipresent in the environment. Recent studies have shown that neonicotinoids may pose adverse effects on non-target organisms other than the known neurotoxicity, raising emerging concerns that these insecticides might pose human health risk through additional toxicity pathways. In the present study, the mitochondria function, oxidative stress, DNA damages, and genes transcription levels were examined in the human neuroblastoma SH-SY5Y cells after 48-h exposure to imidacloprid at concentrations from 0.05 to 200 µmol/L. Results showed that imidacloprid induced mitochondrial dysfunction with the degradation of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) levels. In addition, imidacloprid caused oxidative stress by stimulating the generation of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) via the disruption of calcium ion level and mitochondrial function. Ultimately, the oxidative stress continued to produce DNA damage and apoptosis in SH-SY5Y cells at imidacloprid concentrations above 47.6 µmol/L. Among the evaluated endpoints, ATP was the most sensitive, with a median activity concentration of 0.74 µmol/L. The 5 % hazard concentration of imidacloprid was estimated to be 0.69 µmol/L, which can be used as a threshold for human health risk assessment for imidacloprid. Collectively, our results provide an important support for further research on potential toxicity of neonicotinoids related to mitochondrial toxicity in humans.

4.
Brain Res ; : 149175, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168266

RESUMO

Recent investigations indicate that tannic acid is associated with a decrease in oxidative damage. Growing evidence supports the protective effects of tannic acid on the central nervous system (CNS). However, uncertainties persist regarding its influence on hydrogen peroxide (H2O2)-triggered oxidative impairment in nerve cells and its interaction with apoptosis. Hence, the objective of this work was to examine the neuroprotective impact of tannic acid on SH-SY5Y cell impairment following H2O2-induced oxidative stress, particularly concerning apoptotic pathways. The control group received no treatment, while the H2O2 group underwent treatment with 0.5 mM H2O2 for a duration of 24 h. The tannic acid group received treatment with different concentrations of tannic acid for a duration of 24 h. Meanwhile, the tannic acid + H2O2 group underwent pre-treatment with tannic acid for one hour and was subsequently subjected to 0.5 mM H2O2 for one day. Within the tannic acid + H2O2 group, the cell viability in SH-SY5Y cells was notably enhanced by tannic acid at concentrations of 2.5, 5, and 10 µM. It also resulted in a considerable rise in TAS (Total Antioxidant Status) levels and a concurrent decline in TOS (Total Oxidant Status) levels, serving as indicators of reduced oxidative stress. Additionally, tannic acid treatment resulted in decreased levels of apoptotic markers (Bax, cleaved PARP, and cleaved caspase-3) and oxidative DNA damage marker (8-oxo-dG), while increasing the anti-apoptotic marker Bcl-2. The findings from flow cytometry also revealed a significant reduction in the apoptosis rate following pretreatment with tannic acid. In summary, tannic acid demonstrates protective effects on SH-SY5Y cells in the face of H2O2-triggered oxidative damage by suppressing both oxidative stress and apoptosis. Nevertheless, additional research is warranted to assess the neuroprotective potential of tannic acid.

5.
Physiol Rep ; 12(16): e70001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161054

RESUMO

Brain-derived neurotrophic factor (BDNF) content and signaling has been identified as one potential regulator of amyloid precursor protein (APP) processing. Recently published work has demonstrated that BDNF reduces BACE1 activity while also elevating the inhibition of GSK3ß in the prefrontal cortex of male C57BL/6J mice. These results provide evidence that BDNF alters APP processing by reducing BACE1 activity, which may act through GSK3ß inhibition. The purpose of this study was to further explore the role of GSK3ß in BDNF-induced regulation on BACE1 activity. We utilized a cell culture and an in vitro activity assay model to pharmacologically target BDNF and GSK3ß signaling to confirm its involvement in the BDNF response. Treatment of differentiated SH-SY5Y neuronal cells with 75 ng/mL BDNF resulted in elevated pTrkB content, pAkt content, pGSK3ß content, and reduced BACE1 activity. An in vitro BACE1 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF reduced BACE1 activity; however, in the presence of TrkB or Akt inhibition, this effect was abolished. An in vitro ADAM10 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF did not alter ADAM10 activity. However, inhibiting BDNF signaling reduced ADAM10 activity. Collectively these studies suggest that GSK3ß inhibition may be necessary for BDNF-induced reductions in BACE1 activity. These findings will allow for the optimization of future therapeutic strategies by selectively targeting TrkB activation and GSK3ß inhibition.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Fator Neurotrófico Derivado do Encéfalo , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Neurônios , Proteínas Proto-Oncogênicas c-akt , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Camundongos , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Transdução de Sinais , Linhagem Celular Tumoral , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo
6.
J Biotechnol ; 393: 7-16, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033880

RESUMO

Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer's disease (AD), remain unclear. This study assessed the effects of Pg's virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels. In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.

7.
Pharmaceutics ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065661

RESUMO

Targeting drugs to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). The cutting edge in nanotechnology generates optimism to overcome the growing challenges in biomedical sciences through the effective engineering of nanogels. The primary objective of the present report was to develop and characterize a biocompatible natural chitosan (CS)-based NG that can be tracked thanks to the tricarbocyanine (CNN) fluorescent probe addition on the biopolymer backbone. FTIR shed light on the chemical groups involved in the CS and CNN interactions and between CNN-CS and tripolyphosphate, the cross-linking agent. Both in vitro and in vivo experiments were carried out to determine if CS-NGs can be utilized as therapeutic delivery vehicles directed towards the brain. An ionic gelation method was chosen to generate cationic CNN-CS-NG. DLS and TEM confirmed that these entities' sizes fell into the nanoscale. CNN-CS-NG was found to be non-cytotoxic, as determined in the SH-SY5Y neuroblastoma cell line through biocompatibility assays. After cellular internalization, the occurrence of an endo-lysosomal escape (a crucial event for an efficient drug delivery) of CNN-CS-NG was detected. Furthermore, CNN-CS-NG administered intraperitoneally to female CF-1 mice were detected in different brain regions after 2 h of administration, using fluorescence microscopy. To conclude, the obtained findings in the present report can be useful in the field of neuro-nanomedicine when designing drug vehicles with the purpose of delivering drugs to the CNS.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39058735

RESUMO

Objective: To investigate the effects of photobiomodulation therapy (PBMT) at 660 and 810 nm on amyloid-beta (Aß)42-induced toxicity in differentiated SH-SY5Y cells and to assess its impact on Aß42 accumulation and cholinergic neurotransmission. Background: Alzheimer's disease (AD) is characterized by the accumulation of Aß peptides, leading to neurodegeneration, cholinergic deficit, and cognitive decline. PBMT has emerged as a potential therapeutic approach to mitigate Aß-induced toxicity and enhance cholinergic function. Methods: Differentiated neurons were treated with 1 µM Aß42 for 1 day, followed by daily PBMT at wavelengths of 660 and 810 nm for 7 days. Treatments used LEDs emitting continuous wave light at a power density of 5 mW/cm2 for 10 min daily to achieve an energy density of 3 J/cm2. Results: Differentiated SH-SY5Y cells exhibited increased Aß42 aggregation, neurite retraction, and reduced cell viability. PBMT at 810 nm significantly mitigated the Aß42-induced toxicity in these cells, as evidenced by reduced Aß42 aggregation, neurite retraction, and improved cell viability and neuronal morphology. Notably, this treatment also restored acetylcholine levels in the neurons exposed to Aß42. Conclusions: PBMT at 810 nm effectively reduces Aß42-induced toxicity and supports neuronal survival, highlighting its neuroprotective effects on cholinergic neurons. By shedding light on the impact of low-level light therapy on Aß42 accumulation and cellular processes. These findings advocate for further research to elucidate the mechanisms of PBMT and validate its clinical relevance in AD management.

9.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000492

RESUMO

Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 µM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.


Assuntos
Apoptose , Diferenciação Celular , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Pironas/farmacologia
10.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000543

RESUMO

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Assuntos
Diferenciação Celular , Sistema Enzimático do Citocromo P-450 , Doenças Neurodegenerativas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular Tumoral , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios/metabolismo
11.
J Appl Toxicol ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004823

RESUMO

The aim of this study was to evaluate the anticancer effects of piceatannol, a natural stilbenoid, on human neuroblastoma cells. In order to accomplish this goal, we performed various cellular assays, including the XTT cell proliferation assay for cell viability, colony formation assay for colony formation capacity, FITC Annexin V and cell death detection kit for apoptosis, matrigel invasion assay for invasion capacity, intracellular reactive oxygen species (ROS) red dye for intracellular ROS levels, TMRM staining method for mitochondrial membrane potential (MMP), and the CYTO-ID autophagy detection kit for autophagy. Furthermore, we analyzed the expression levels of genes associated with apoptosis and autophagy using RT-qPCR. Based on our findings, piceatannol exhibited cytotoxic effects on neuroblastoma cells. Besides, treatment with piceatannol at both 50 and 100 µM concentrations for 72 h decreased colony formation, induced apoptosis and autophagy, inhibited cell invasion, decreased MMP, and increased ROS levels in SH-SY5Y cells. In addition, we observed significant upregulation in the expression levels of CASP8, BECLIN, ATG5, ATG7, and MAPILC3A genes between the two doses. These results suggest that piceatannol enhances autophagic activity and induces caspase-dependent apoptosis, indicating its potential as a therapeutic agent against neuroblastoma cells.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39017752

RESUMO

There has been much interest in the use of cell culture models of neurones, to avoid the animal welfare and cost issues of using primary and human-induced pluripotent stem cell (hiPSC)-derived neurones respectively. The human neuroblastoma cell line, SH-SY5Y, is extensively used in laboratories as they can be readily expanded, are of low cost and can be differentiated into neuronal-like cells. However, much debate remains as to their phenotype once differentiated, and their ability to recapitulate the physiology of bona fide neurones. Here, we characterise a differentiation protocol using retinoic acid and BDNF, which results in extensive neurite outgrowth/branching within 10 days, and expression of key neuronal and synaptic markers. We propose that these differentiated SH-SY5Y cells may be a useful substitute for primary or hiPSC-derived neurones for cell biology studies, in order to reduce costs and animal usage. We further propose that this characterised differentiation timecourse could be used as an in vitro model for neuronal differentiation, for proof-of principle studies on neurogenesis, e.g. relating to neurodegenerative diseases. Finally, we demonstrate profound changes in Tau phosphorylation during differentiation of these cells, suggesting that they should not be used for neurodegeneration studies in their undifferentiated state.

13.
IBRO Neurosci Rep ; 17: 73-82, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39021664

RESUMO

Neuroblastomas are pediatric tumors arising from undifferentiated cells of neural crest origin with stem cell-like characteristics. Dysregulation of Wnt/ß-catenin signaling has been shown to be linked to the development of various tumors. Activated Wnt signaling results in ß-catenin accumulation in the nucleus to support pro-neoplastic traits. DKK1, a secreted glycoprotein, is an inhibitor of Wnt signaling, and the addition of DKKI to the culture medium has been used to suppress the Wnt pathway. This study aimed to analyze the role of Dickopff-1 as a potential differentiating agent for the neuroblastoma cell line SH-SY5Y and neurospheres derived from it. The treatment of SH-5Y5Y derived neurospheres by DKK1 resulted in their disintegration and reduced proliferation markers like Ki67, PCNA. DKK1 treatment to the neurospheres also resulted in the loss of cancer stem cell markers like CD133, KIT and pluripotency markers like SOX2, OCT4, NANOG. DKK1 treatment caused reduction in mRNA expression of ß-catenin and TCF genes like TCF4, TCF12. When the SH-SY5Y cancer cells were grown under differentiating conditions, DKKI caused neuronal differentiation by itself, and in synergy with retinoic acid. This was verified by the expression of markers like MAPT, DCX, GAP43, ENO2 and also with changes in neurite length. We concluded that Wnt inhibition, as exemplified by DKK1 treatment, is therefore a possible differentiating condition and also suppresses the proliferative and cancer stemness related properties of SH-SY5Y neuroblastoma cells.

14.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987218

RESUMO

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Assuntos
Plaquetas , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Neurônios Dopaminérgicos , Neuroblastoma , Humanos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Plaquetas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Tretinoína/farmacologia , Fenótipo
15.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000210

RESUMO

Neurodegeneration diseases (NDs) are a group of complex diseases primarily characterized by progressive loss of neurons affecting mental function and movement. Oxidative stress is one of the factors contributing to the pathogenesis of NDs, including Alzheimer's disease (AD). These reactive species disturb mitochondrial function and accelerate other undesirable conditions including tau phosphorylation, inflammation, and cell death. Therefore, preventing oxidative stress is one of the imperative methods in the treatment of NDs. To accomplish this, we prepared hexane and ethyl acetate extracts of Anethum graveolens (dill) and identified the major phyto-components (apiol, carvone, and dihydrocarvone) by GC-MS. The extracts and major bioactives were assessed for neuroprotective potential and mechanism in hydrogen peroxide-induced oxidative stress in the SH-SY5Y neuroblastoma cell model and other biochemical assays. The dill (extracts and bioactives) provided statistically significant neuroprotection from 0.1 to 30 µg/mL by mitigating ROS levels, restoring mitochondrial membrane potential, reducing lipid peroxidation, and reviving the glutathione ratio. They moderately inhibited acetylcholine esterase (IC50 dill extracts 400-500 µg/mL; carvone 275.7 µg/mL; apiole 388.3 µg/mL), displayed mild anti-Aß1-42 fibrilization (DHC 26.6%) and good anti-oligomerization activity (>40% by dill-EA, carvone, and apiole). Such multifactorial neuroprotective displayed by dill and bioactives would help develop a safe, low-cost, and small-molecule drug for NDs.


Assuntos
Anethum graveolens , Neuroblastoma , Fármacos Neuroprotetores , Estresse Oxidativo , Extratos Vegetais , Sementes , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Anethum graveolens/química , Sementes/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Sobrevivência Celular/efeitos dos fármacos , Acetilcolinesterase/metabolismo
16.
Biology (Basel) ; 13(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056736

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that is projected by the WHO to affect over 100 million people by 2050. Clinically, AD patients undergoing long-term antipsychotic treatment often experience severe anxiety or depression in later stages. Furthermore, early-stage AD manifests with weakened α waves in the brain, progressing to diminished α and ß waves in late-stage disease, reflecting changes in emotional states and disease progression. In this study, EEG signal analysis revealed that inhalation of Dalbergia pinnata (Lour.) Prain essential oil (DPEO) enhanced δ, θ, α and ß wave powers in the frontal and parietal lobes, with a rising trend in the ß/α ratio in the temporal lobe. These findings suggest an alleviation of anxiety and an enhancement of cognitive functions. Treatment of the AD SH-SY5Y (human neuroblastoma cells) cell model with DPEO resulted in decreased intracellular levels of Aß, GSK-3ß, P-Tau, IL-1ß, TNF-α, IL-6, COX-2, OFR, and HFR, alongside reduced AchE and BchE activities and increased SOD activity. Network pharmacology analysis indicated a potential pharmacological mechanism involving the JAK-STAT pathway. Our study provides evidence supporting DPEO's role in modulating anxiety and slowing AD pathological progression.

17.
Cell Biochem Funct ; 42(6): e4102, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39076066

RESUMO

GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of ß-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of ß-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.


Assuntos
Sistemas CRISPR-Cas , Gangliosidose GM1 , Humanos , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Neurônios/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos
18.
Nutrients ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999824

RESUMO

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.


Assuntos
Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Doença de Parkinson , Polifenóis , Rotenona , Animais , Humanos , Masculino , Camundongos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , Doença de Parkinson/tratamento farmacológico , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Kelp/química
19.
PeerJ ; 12: e17732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035166

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Fator Neurotrófico Derivado do Encéfalo , Diferenciação Celular , Neuroblastoma , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Diferenciação Celular/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas tau/metabolismo , Tretinoína/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
20.
J Neurosci Methods ; 409: 110204, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925370

RESUMO

BACKGROUND: Microfluidics offers precise drug delivery and continuous monitoring of cell functions, which is crucial for studying the effects of toxins and drugs. Ensuring proper cell growth in these space-constrained systems is essential for obtaining consistent results comparable to standard Petri dishes. NEW METHOD: We investigated the proliferation of SH-SY5Y cells on circular polycarbonate chambers with varying surface areas. SH-SY5Y cells were chosen for their relevance in neurodegenerative disease research. RESULTS: Our study demonstrates a correlation between the chamber surface area and SH-SY5Y cell growth rates. Cells cultured in chambers larger than 10 mm in diameter exhibited growth comparable to standard 60-mm dishes. In contrast, smaller chambers significantly impeded growth, even at identical seeding densities. Similar patterns were observed for HeLaGFP cells, while 16HBE14σ cells proliferated efficiently regardless of chamber size. Additionally, SH-SY5Y cells were studied in a 12-mm diameter sealed chamber to assess growth under restricted gas exchange conditions. COMPARISON WITH EXISTING METHODS: Our findings underscore the limitations of small chamber sizes in microfluidic systems for SH-SY5Y cells, an issue not typically addressed by conventional methods. CONCLUSIONS: SH-SY5Y cell growth is highly sensitive to spatial constraints, with markedly reduced proliferation in chambers smaller than 10 mm. This highlights the need to carefully consider chamber size in microfluidic experiments to achieve cell growth rates comparable to standard culture dishes. The study also shows that while SH-SY5Y and HeLaGFP cells are affected by chamber size, 16HBE14σ cells are not. These insights are vital for designing effective microfluidic systems for bioengineering research.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Linhagem Celular Tumoral , Microfluídica/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proliferação de Células , Consumo de Oxigênio/fisiologia , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA