Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Int Immunopharmacol ; 143(Pt 2): 113498, 2024 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-39467353

RESUMO

Interferon alpha (IFNα) leads to therapeutic effects on various tumors, especially renal cell cancer (RCC), by directly protecting against tumors cell proliferation or indirectly inducing an anti-tumor immune response. However, new combination therapies are needed to enhance the efficacy of IFNα and reduce its adverse effects during long-term treatment. In this study, we found that the anti-proliferative effects of IFNα on RCC cells in vitro and in vivo were greater after the allosteric inhibition of SHP2 by SHP099 than after treatment with enzymatic inhibitors of SHP2. SHP099 increased IFNα-induced pro-caspase-1 expression in RCC cells, activated the NLRP3 inflammasome, and induced pyroptosis. Mechanistically, SHP099 not only increased the expression of NLRP3 inflammasome components via the NF-κB signaling pathway, but also further activated the NLRP3 inflammasome by regulating mitochondrial homeostasis through ANT1-mediated reactive oxygen species modulation. Allosteric inhibition of SHP2 by SHP099 also potently enhanced the anti-tumor immunity induced by IFNα by modulating T cell proliferation and infiltration in vitro and in vivo. These results reveal the new function of SHP2 in NLRP3 inflammasome activation and pyroptosis in RCC and provide a basis for further investigating the combination of allosteric SHP2 inhibitors with IFNα in cancer immunotherapy.

2.
FASEB J ; 38(17): e70013, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39225365

RESUMO

Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.


Assuntos
Cartilagem Articular , Condrócitos , Osteoartrite , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Fatores de Transcrição SOX9 , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Proliferação de Células , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
3.
Chembiochem ; : e202400333, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229773

RESUMO

This study explores the use of activity-based protein profiling to study protein tyrosine phosphatases. With the discovery of allosteric SHP2 inhibitors, this enzyme family has resurfaced as interesting drug targets. Therefore, we envisioned that previously described direct electrophiles and quinone methide-based traps targeting phosphatases could be applied in competitive activity-based protein profiling assays. This study evaluates three direct electrophiles, specifically, a vinyl sulfonate, a vinyl sulfone, and an α-bromobenzylphosphonate as well as three quinone methide-based traps as activity-based probes. For all these moieties it was previously shown that they could selectively engage in assays with purified or overexpressed phosphatases in bacterial lysates. However, this study demonstrates that probes based on these moieties all suffer from unspecific labelling. Direct electrophiles were either unspecific or not activity-based, while quinone methide-based traps showed dependence on phosphatase activity but also resulted in unspecific labelling due to diffusion after activation. This phenomenon, termed 'bystander' labelling, occurred even with catalytically inactive SHP2 mutants. We concluded that alternative strategies or chemistries are needed to apply activity-based protein profiling in phosphatase research. Moreover, this study shows that quinone methide-based designs have limited potential in probe and inhibitor development strategies due to their intrinsic reactivity.

4.
Acta Pharm Sin B ; 14(8): 3624-3642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39234614

RESUMO

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a promising therapeutic target for cancer therapy. In this work, we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors, leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent, selective, orally bioavailable allosteric SHP2 inhibitor (SHP2WT IC50 = 2.7 nmol/L) with favorable pharmacokinetic profiles (F = 42.5%; t 1/2 = 2.47 h). Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the "tunnel" allosteric site of SHP2. TK-642 could effectively suppress cell proliferation (KYSE-520 cells IC50 = 5.73 µmol/L) and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways. Additionally, oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model, with a T/C value of 83.69%. Collectively, TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.

5.
Mol Oncol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253995

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.

6.
Adv Sci (Weinh) ; 11(41): e2403038, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39234819

RESUMO

Sterile inflammation occurs in various chronic diseases due to many nonmicrobe factors. Examples include endometrial hyperplasia (EH), endometriosis, endometrial cancer, and breast cancer, which are all sterile inflammation diseases induced by estrogen imbalances. However, how estrogen-induced sterile inflammation regulates EH remains unclear. Here, a single-cell RNA-Seq is used to show that SHP2 upregulation in endometrial endothelial cells promotes their inflammatory activation and subsequent transendothelial macrophage migration. Independent of the initial estrogen stimulation, IL1ß and TNFα from macrophages then create a feedforward loop that enhances endothelial cell activation and IGF1 secretion. This endothelial cell-macrophage interaction sustains sterile endometrial inflammation and facilitates epithelial cell proliferation, even after estradiol withdrawal. The bulk RNA-Seq results and phosphoproteomic analysis show that endothelial SHP2 mechanistically enhances RIPK1 activity by dephosphorylating RIPK1Tyr380. This event activates downstream activator protein 1 (AP-1) and instigates the inflammation response. Furthermore, targeting SHP2 using SHP099 (an allosteric inhibitor) or endothelial-specific SHP2 deletion alleviates endothelial cell activation, macrophage infiltration, and EH progression in mice. Collectively, the findings demonstrate that SHP2 mediates the transition of endothelial activation from estradiol-driven acute inflammation to macrophage-amplified chronic inflammation. Targeting sterile inflammation mediated by endothelial cell activation is a promising strategy for nonhormonal intervention in estrogen-related diseases.


Assuntos
Endométrio , Células Endoteliais , Estradiol , Inflamação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Feminino , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Camundongos , Estradiol/farmacologia , Estradiol/metabolismo , Inflamação/metabolismo , Inflamação/genética , Células Endoteliais/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Humanos , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Hiperplasia Endometrial/metabolismo , Hiperplasia Endometrial/genética
7.
Eur J Med Chem ; 279: 116830, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39303516

RESUMO

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), a critical regulator of proliferation pathways and immune checkpoint signaling in various cancers, is an attractive target for cancer therapy. Here, we report the discovery of a novel series of substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Among them, compound C6 showed excellent inhibitory activity against SHP2 and antiproliferative effect on MV-4-11 cell line with IC50 values of 0.13 and 3.5 nM, respectively. Importantly, orally administered C6 displayed robust in vivo antitumor efficacy in the MV-4-11 xenograft mouse model (TGI = 69.5 %, 30 mg/kg). Subsequent H&E and Ki67 staining showed that C6 significantly suppressed the proliferation of tumor cells. Notably, flow cytometry, ELISA and immunofluorescence experiments showed that C6 remarkably decreased the population of CD206+/Ly6C+ M2-like tumor-associated macrophages (TAMs), the expression level of interleukin-10 (IL-10), and the number of F4/80+/CD206+ M2-like TAMs, suggesting that C6 could effectively alleviate the activation and infiltration of M2-like TAMs. Taken together, these results illustrate that C6 is a promising SHP2 inhibitor worthy of further development.


Assuntos
Antineoplásicos , Proliferação de Células , Descoberta de Drogas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Piridinas , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos , Animais , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Camundongos , Regulação Alostérica/efeitos dos fármacos , Estrutura Molecular , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Camundongos Endogâmicos BALB C
8.
Aging (Albany NY) ; 16(17): 12263-12276, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197167

RESUMO

The primary objective of this study was to explore the extensive implications and complex molecular interactions arising from the confluence of excessive glucocorticoids and RANKL on the differentiation process of BMM into osteoclasts, profoundly impacting osteoporosis development. The methodology encompassed X-ray analysis and HE staining for evaluating bone loss in mice, while immunohistochemical staining was utilized to observe phosphorylated SHP2 (p-SHP2) expression. The assessment of several phosphorylated and total protein expression levels, including NF-κB, SHP2, SYK, JAK2, TAK1, NFATC1, c-fos, and Cathepsin K, was conducted via Western blotting. Additional experiments, involving CCK8 and monoclonal proliferation assays, were undertaken to determine BMM proliferation capacity. Immunofluorescence staining facilitated the quantification of TRAP fluorescence intensity. In vivo analysis revealed that glucocorticoid surplus triggers SHP2 signaling pathway activation, accelerating osteoporosis progression. Western blot results demonstrated that SHP2 inhibition could decrease the expression of specific proteins such as p-NF-κB and p-SHP2, with minimal effects on p-SYK levels. In vitro findings indicated that glucocorticoid and RANKL interaction activates the SHP2 pathway through NF-κB and SYK pathways, enhancing expressions of p-JAK2, p-TAK1, NFATC1, c-fos, and Cathepsin K, thereby promoting BMM to osteoclast transformation. Conclusion: Excessive glucocorticoids and RANKL interaction advance osteoclast differentiation from BMM by activating the SYK/SHP2/NF-κB signaling pathway, expediting osteoporosis progression.


Assuntos
Diferenciação Celular , Glucocorticoides , Macrófagos , NF-kappa B , Osteoclastos , Osteoporose , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Ligante RANK , Transdução de Sinais , Quinase Syk , Animais , Ligante RANK/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Quinase Syk/metabolismo , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Glucocorticoides/farmacologia , Osteoporose/metabolismo , Osteoporose/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL
9.
Aging (Albany NY) ; 16(17): 12335-12345, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39207449

RESUMO

OBJECTIVE: To investigate the effect of PD-1 monoclonal antibodies in tumor-associated macrophages on angiogenesis in cervical cancer and its mechanism of action. METHODS: The effect of PD-1 monoclonal antibodies on the progression of cervical cancer was assessed using the nude mouse xenograft model and HE staining; the impact of PD-1 monoclonal antibodies on cervical cancer cell migration was evaluated using wound healing assay and Transwell assay; the effect on vascular formation in cervical cancer cells was examined using an angiogenesis assay; the impact on the expression of related proteins was tested using Western blotting. RESULTS: PD-1 monoclonal antibodies in tumor-associated macrophages can regulate and thus inhibit the progression of cervical cancer while promoting the expression of SHP2. Additionally, Sindilizumab inhibited the expression of tissue-type fibrinogen activator K and HIF1α through the PD-1/IRE1α/SHP2 signaling pathway, which inhibited the migration and neovascularization of cervical cancer cells. CONCLUSIONS: This study discovered that PD-1 monoclonal antibodies in tumor-associated macrophages inhibit vascular generation inside cervical cancer by affecting the PD-1/IRE1α/SHP2/HIF1α signaling pathway, providing a new therapeutic target for the treatment of cervical cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Nus , Neovascularização Patológica , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Macrófagos Associados a Tumor , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Animais , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 14(1): 20251, 2024 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215017

RESUMO

Monosodium urate (MSU) crystallisation deposited in local tissues and organs induce inflammatory reactions, resulting in diseases such as gout. MSU has been recognized as a common and prevalent pathology in various clinical conditions. In this study, we investigated the role of MSU in the pathogenesis of diabetic kidney disease (DKD). We induced renal injury in diabetic kidney disease mice using streptozotocin (STZ) and assessed renal histopathological damage using Masson's trichrome staining and Collagen III immunofluorescence staining. We measured the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and uric acid (UA) using ELISA. Protein expression levels of NLRP3, p-NF-κB, SHP2, p-STAT3, and p-ERK1/2 were analyzed by Western blot. To further investigate the role of MSU in diabetic kidney disease, we conducted in vitro experiments. In our in vivo experiments, we found that compared to the Model group, there was a significant increase in interstitial fibrosis in the kidneys of mice after treatment with MSU, accompanied by elevated levels of MDA, SOD, and UA. Furthermore, the protein expression of NLRP3, p-NF-NB, SHP2, p-STAT3, and p-ERK1/2 was upregulated. In our subsequent studies on mouse fibroblasts (L929 cells), we discovered that high glucose, MSU, and TGF-ß could promote the expression of P22, GP91, NLRP3, NF-κB, p-NF-κB, p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins. Additionally, we found that SHP2 could counteract the upregulation trend induced by MSU on the expression of p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins, and inhibitors YQ128, NAC, and Cetuximab exhibited similar effects. Furthermore, immunofluorescence results indicated that SHP2 could inhibit the expression of the fibrosis marker α-SMA in L929 cells. These findings suggest that MSU can promote renal fibroblast SHP2 expression, induce oxidative stress, activate the NLRP3/NF-κB pathway, and enhance diabetic kidney disease fibroblast proliferation through the TGFß/STAT3/ERK1/2 signaling pathway, leading to renal fibrosis.


Assuntos
Proliferação de Células , Nefropatias Diabéticas , Fibroblastos , Fibrose , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Masculino , Camundongos , Cristalização , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ácido Úrico/metabolismo
11.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091798

RESUMO

Multi-domain enzymes can be regulated by both inter-domain interactions and structural features intrinsic to the catalytic domain. The tyrosine phosphatase SHP2 is a quintessential example of a multi-domain protein that is regulated by inter-domain interactions. This enzyme has a protein tyrosine phosphatase (PTP) domain and two phosphotyrosine-recognition domains (N-SH2 and C-SH2) that regulate phosphatase activity through autoinhibitory interactions. SHP2 is canonically activated by phosphoprotein binding to the SH2 domains, which causes large inter-domain rearrangements, but autoinhibition can also be disrupted by disease-associated mutations. Many details of the SHP2 activation mechanism are still unclear, the physiologically-relevant active conformations remain elusive, and hundreds of human variants of SHP2 have not been functionally characterized. Here, we perform deep mutational scanning on both full-length SHP2 and its isolated PTP domain to examine mutational effects on inter-domain regulation and catalytic activity. Our experiments provide a comprehensive map of SHP2 mutational sensitivity, both in the presence and absence of inter-domain regulation. Coupled with molecular dynamics simulations, our investigation reveals novel structural features that govern the stability of the autoinhibited and active states of SHP2. Our analysis also identifies key residues beyond the SHP2 active site that control PTP domain dynamics and intrinsic catalytic activity. This work expands our understanding of SHP2 regulation and provides new insights into SHP2 pathogenicity.

12.
Cells ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39120280

RESUMO

Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.


Assuntos
Transdução de Sinais , Humanos , Animais
13.
Genes (Basel) ; 15(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202410

RESUMO

Histiocytic sarcoma (HS) is a rare and highly aggressive cancer in humans and dogs. In dogs, it has a high prevalence in certain breeds, such as Bernese mountain dogs (BMDs) and flat-coated retrievers. Hemophagocytic histiocytic sarcoma (HHS) is a unique form of HS that presents with erythrophagocytosis. Due to its rareness, the study of HHS is very limited, and mutations in canine HHS patients have not been studied to date. In previous work, our research group identified two major PTPN11/SHP2 driver mutations, E76K and G503V, in HS in dogs. Here, we report additional mutations located in exon 3 of PTPN11/SHP2 in both HS and HHS cases, further supporting that this area is a mutational hotspot in dogs and that mutations in tumors and liquid biopsies should be evaluated utilizing comprehensive methods such as Sanger and NextGen sequencing. The overall prevalence of PTPN11/SHP2 mutations was 55.8% in HS and 46.2% in HHS. In addition, we identified mutations in KRAS, in about 3% of HS and 4% of HHS cases. These findings point to the shared molecular pathology of activation of the MAPK pathway in HS and HHS cases. We evaluated the efficacy of the highly specific MEK inhibitor, cobimetinib, in canine HS and HHS cell lines. We found that the IC50 values ranged from 74 to 372 nM, which are within the achievable and tolerable ranges for cobimetinib. This finding positions cobimetinib as a promising potential candidate for future canine clinical trials and enhances our understanding of the molecular defects in these challenging cancers.


Assuntos
Azetidinas , Sarcoma Histiocítico , Mutação , Piperidinas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Proto-Oncogênicas p21(ras) , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Piperidinas/farmacologia , Cães , Animais , Sarcoma Histiocítico/tratamento farmacológico , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/veterinária , Sarcoma Histiocítico/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Azetidinas/farmacologia , Doenças do Cão/genética , Doenças do Cão/tratamento farmacológico , Doenças do Cão/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral
14.
J Biol Chem ; 300(9): 107616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089586

RESUMO

Targeted protein degradation is an emergent and rapidly evolving therapeutic strategy. In particular, biologics-based targeted degradation modalities (bioPROTACs) are relatively under explored compared to small molecules. Here, we investigate how target affinity, cellular localization, and valency of bioPROTACs impact efficacy of targeted degradation of the oncogenic phosphatase src-homology 2 containing protein tyrosine phosphatase-2 (SHP2). We identify bivalent recruitment of SHP2 by bioPROTACs as a broadly applicable strategy to improve potency. Moreover, we demonstrate that SHP2-targeted bioPROTACs can effectively counteract gain-of-function SHP2 mutants present in cancer, which are otherwise challenging to selectively target with small molecule constructs. Overall, this study demonstrates the utility of bioPROTACs for challenging targets, and further explicates design principles for therapeutic bioPROTACs.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteólise , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Humanos , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
15.
Heliyon ; 10(14): e34008, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130478

RESUMO

OBJECTIVE: In gastric cancer cells, the influence of CAR T cells can be produced in the process of inhibiting the progression of gastric cancer, and the role of tyrosine phosphatase SHP2 can be explored in this study, along with its molecular mechanisms. METHODS: The research utilized subcutaneous tumor models in nude mice to assess gastric cancer progression. Protein expression was detected using Western blotting, while Q-PCR examined the expression levels of lncRNA SNHG18 and miR-211-5p in MGC-803 cells. The relationship between miR-211-5p and lncRNA SNHG18 can be analyzed by dual luciferase reporter genes. The migratory ability of MGC-803 cells was determined through wound healing and transwell experiments, and cell proliferation was evaluated using a CCK-8 assay. RESULTS: SHP2 was found to inhibit the cytotoxic effects of CAR-T cells on MGC-803 cells, and it suppressed the expression of proteins related to the ROS/JNK/NFAT4 signaling pathway in MGC-803 cells and the miR-211-5p/BRD4 axis in CAR-T cells. In addition, the proliferation, invasion and migration of MGC-803 cells were promoted, and the expression of miR-211-5p could be inhibited specifically by ncRNA SNHG18, as shown below:SHP2 in gastric cancer cells mediates the ROS/JNK/NFAT4 signaling pathway and induces lncRNA SNHG18, which, through the miR-211-5p/BRD4 axis in CAR-T cells, promotes gastric cancer growth and metastasis.

16.
Front Pharmacol ; 15: 1423903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101141

RESUMO

Background: YinChen WuLing Powder (YCWLP) has been recommended by consensus for the treatment of non-alcoholic steatohepatitis (NASH); nevertheless, its specific pharmacological mechanisms remain to be elucidated. This study aims to dissect the mechanisms underlying the therapeutic effects of YCWLP on NASH using a hybrid approach that encompasses network pharmacology, molecular docking, and in vitro experimental validation. Methods: We compiled the chemical constituents of YCWLP from the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), while potential targets were predicted using the SwissTargetPrediction database. To identify NASH-related candidate targets, comprehensive retrieval was carried out using five authoritative databases. Protein-Protein Interaction (PPI) networks of direct targets of YCWLP in NASH treatment were then constructed using the String database, and functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, were conducted through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Core targets were discerned using the Molecular Complex Detection (MCODE) and cytoHubba algorithms. Subsequently, molecular docking of key compounds to core targets was conducted using AutoDock software. Moreover, we established a free fatty acid-induced HepG2 cell model to simulate NASH in vitro, with YCWLP medicated serum intervention employed to corroborate the network pharmacology-derived hypotheses. Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), and Western blotting analyses was employed to investigate the lipid, hepatic enzyme, SHP2/PI3K/NLRP3 signaling pathway and associated cytokine levels. Results: The network pharmacology analysis furnished a list of 54 compounds from YCWLP and 167 intersecting targets associated with NASH. Through analytic integration with multiple algorithms, PTPN11 (also known as SHP2) emerged as a core target of YCWLP in mitigating NASH. The in vitro experiments validated that 10% YCWLP medicated serum could remarkably attenuate levels of total cholesterol (TC, 1.25 vs. 3.32) and triglyceride (TG, 0.23 vs. 0.57) while ameliorating alanine aminotransferase (ALT, 7.79 vs. 14.78) and aspartate aminotransferase (AST, 4.64 vs. 8.68) leakage in NASH-afflicted cells. In addition, YCWLP significantly enhanced the phosphorylation of SHP2 (0.55 vs. 0.20) and downregulated the expression of molecules within the SHP2/PI3K/NLRP3 signaling axis, including p-PI3K (0.42 vs. 1.02), NLRP3 (0.47 vs. 0.93), along with downstream effectors-cleaved Caspase-1 (0.21 vs. 0.49), GSDMD-NT (0.24 vs. 0.71), mature interleukin-1ß (IL-1ß, 0.17 vs. 0.48), pro-IL-1ß (0.49 vs. 0.89), mature interleukin-18 (IL-18, 0.15 vs. 0.36), and pro-IL-18 (0.48 vs. 0.95). Conclusion: Our research reveals that YCWLP exerts therapeutic effects against NASH by inhibiting lipid accumulation and inflammation, which involves the attenuation of pyroptosis via the SHP2/PI3K/NLRP3 pathway.

17.
Transl Neurosci ; 15(1): 20220347, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118829

RESUMO

Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvß3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvß3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvß3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.

18.
Int J Biochem Cell Biol ; 174: 106621, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181599

RESUMO

BACKGROUND: Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear. METHODS: Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape in vivo. RESULTS: MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8+ T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. In vivo experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity. CONCLUSION: In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.


Assuntos
Regulação para Baixo , Camundongos Nus , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Neoplasias Gástricas , Evasão Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos Endogâmicos BALB C , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Evasão Tumoral/genética
19.
Cell Mol Life Sci ; 81(1): 294, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977495

RESUMO

The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.


Assuntos
Movimento Celular , Células Dendríticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Camundongos , Quinases Associadas a rho/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Camundongos Endogâmicos C57BL
20.
Bioorg Chem ; 151: 107661, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067422

RESUMO

SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 µM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 µM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 µM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 µM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.


Assuntos
Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Alostérica/efeitos dos fármacos , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA