Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2789: 121-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506997

RESUMO

Autoimmune responses are characterized by the presence of antibodies and lymphocytes specific to self or so-called autoantigens. Among such autoantigens is DNA; therefore, screening for antibodies recognizing single- and/or double-stranded DNA is commonly used to detect and classify autoimmune diseases. While autoimmunity affects both sexes, females are generally more affected than males, which is recapitulated in some animal models. A variety of factors, including genetic predisposition and the environment, contribute to the development of autoimmune disorders. Since certain drug products may also contribute to the development of autoimmunity, understanding a drug's potential to trigger an autoimmune response is of interest to immunotoxicology. However, models to study autoimmunity are limited, and it is generally agreed that no model can accurately predict autoimmunity in humans. Herein, we present an in vivo protocol utilizing the SJL/J mouse model to study nanoparticles' effects on the development of autoimmune responses. The protocol is adapted from the literature describing the use of this model to study chemically induced lupus.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Masculino , Camundongos , Feminino , Animais , Autoimunidade , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/genética , Autoantígenos , Camundongos Endogâmicos , DNA
2.
Genes Cancer ; 11(1-2): 83-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577159

RESUMO

Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin's-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.

3.
Am J Chin Med ; 44(6): 1099-1110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627913

RESUMO

Bearing pathologic and clinical similarities to human multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) is used as a murine model to test potential therapeutic agents for MS. Recently, we reported the protective effects of an acidic polysaccharide of Panax ginseng (APG) in C57BL/6 strain-dependent EAE, a model of primary progressive MS. In this study, we extend our previous findings on the therapeutic capacity of APG in relapsing-remitting EAE (rr-EAE), the animal model to closely mimic recurrent inflammatory demyelination lesions of relapsing-remitting MS. Treatments with APG led to a significant reduction of clinical symptoms and the relapse rate of EAE than vehicle treatments. Consistent with this, histological examination revealed that APG markedly modulated the infiltration of CD4[Formula: see text] T cells and CD11b[Formula: see text] macrophages into the spinal cord and the APG-treated CNS was devoid of demyelination and axonal damages. In addition, APG decreased the proliferation of peripheral PLP-reactive T cells and the production of pro-inflammatory factors such as IFN-[Formula: see text], IL-17 and TNF-[Formula: see text]. The fact that APG can induce clinically beneficial effects to distinct types of EAE furthers our understanding on the basis of its immunosuppression in EAE and, possibly, in MS. Our results suggest that APG may serve as a new therapeutic agent for MS as well as other human autoimmune diseases, and warrants continued evaluation for its translation into therapeutic application.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Panax/química , Fitoterapia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Animais , Antígeno CD11b , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Doenças Desmielinizantes , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Polissacarídeos/isolamento & purificação , Recidiva , Medula Espinal/imunologia , Medula Espinal/patologia
4.
Toxicol Pathol ; 43(5): 737-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25694088

RESUMO

Periodic acid-Schiff (PAS)-positive granular deposits in the hippocampus have been reported previously in certain inbred mouse strains such as C57BL/6 and the senescent-accelerated mouse prone-8. Here, we report for the first time that similar PAS-positive granules age dependently occur in SJL/J mice, a mouse strain, for instance, used for central nervous system disease research. Moreover, similar granules stained intensely positive with a polyclonal antibody directed against p75 neurotrophin receptor (p75(NTR)). Granular deposits were absent in young mice and developed with aging in CA1 and CA2 regions of the hippocampus. Interestingly, granules significantly diminished in SJL/J mice previously treated with cuprizone, a copper chelator, which is a useful model for toxic demyelination. The presented data support the idea that granules might be the result of an imbalance of redox-active metals and/or a dysregulation of complementary mechanisms that regulate their homeostasis in astrocyte-neuron coupling, respectively. It remains to be determined whether the unsuspected immunoreactivity for p75(NTR) represents a false-positive reaction or whether p75(NTR) is crucially involved in the pathogenesis of age-related hippocampal granular deposits in mice.


Assuntos
Hipocampo/química , Hipocampo/patologia , Ácido Periódico/química , Fatores Etários , Animais , Cuprizona/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Inibidores da Monoaminoxidase/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Corantes de Rosanilina/química
5.
J Toxicol Pathol ; 25(2): 135-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22907980

RESUMO

Dysferlin (DYSF) is involved in the membrane-repair process, in the intracellular vesicle system and in T-tubule development in skeletal muscle. It interacts with mitsugumin 53, annexins, caveolin-3, AHNAK, affixin, S100A10, calpain-3, tubulin and dihydropyridine receptor. Limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy (MM) are muscular dystrophies associated with recessively inherited mutations in the DYSF gene. The diseases are characterized by weakness and muscle atrophy that progress slowly and symmetrically in the proximal muscles of the limb girdles. LGMD2B and MM, which are collectively termed "dysferlinopathy", both lead to abnormalities in vesicle traffic and membrane repair at the plasma membrane in muscle fibers. SJL/J (SJL) and A/J mice are naturally occurring animal models for dysferlinopathy. Since there has been no an approach to therapy for dysferlinopathy, the immediate development of a therapeutic method for this genetic disorder is desirable. The murine models are useful in verification experiments for new therapies and they are valuable tools for identifying factors that accelerate dystrophic changes in skeletal muscle. It could be possible that the genetic or immunological background in SJL or A/J mice could modify muscle damage in experiments involving these models, because SJL and A/J mice show differences in the progress and prevalent sites of skeletal muscle lesions as well as in the gene-expression profiles of their skeletal muscle. In this review, we provide up-to-date information on the function of dysferlin, the development of possible therapies for muscle dystrophies (including dysferlinopathy) and the detection of new therapeutic targets for dysferlinopathy by means of experiments using animal models for dysferlinopathy.

6.
J Toxicol Pathol ; 24(1): 49-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22272044

RESUMO

Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted to determine whether or not there are interstrain or site-dependent differences in the gene expression profiles of skeletal muscles in SJL/J and A/J mice as dysferlinopathy models. Upon analysis by qRT-PCR, SJL/J mice showed a trend of increased gene expression level of uncoupling protein 2 in the rectus femoris and longissimus lumborum at 30 weeks of age when dystrophic lesions became histopathologically pronounced. Heme oxygenase 1 and S100 calcium binding protein A4 were upregulated in the rectus femoris, longissimus lumborum and abdominal muscles, in which dystrophic lesions occur more commonly in SJL mice. The gene expression levels of heat shock protein 70 in most muscles of A/J mice were lower than those of BALB/c mice as control. SJL/J mice exhibited a marked lowering of decay-accelerating factor 1/CD55 gene expression level in all studied muscles except for the heart at all ages compared with that of BALB/c mice. This study showed that there were some interstrain differences in the gene expres sion profiles of skeletal muscles between SJL/J and A/J mice. Further investigation is required to reveal whether these alterations of the expression levels are the cause of dystrophic changes or occur subsequent to muscle damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA