Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Int J Dermatol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822591

RESUMO

BACKGROUND: Scalp micropigmentation (SMP) is becoming increasingly popular. Accordingly, complications of the procedure are on the rise. However, the results of improperly performed SMP are exceedingly challenging to rectify and ultimately lead to severe mental stress and feelings of inferiority in patients. AIMS: This retrospective study aimed to explore various aspects of unsatisfactory SMP outcomes and examine corrective measures available after the procedure. MATERIALS AND METHODS: A total of 120 patients who underwent corrective surgery or procedures due to unsatisfactory outcomes after SMP were enrolled in the study. Their photographs and medical charts were reviewed retrospectively. RESULTS: Out of 120 participants, 76 were women and 43 men. In total, 107 patients (89.2%) had been treated at a tattooing or cosmetic facility at a beauty salon performing permanent makeup, 12 (10.0%) at another clinic, and one (0.8%) at an oriental medicine clinic. Of 120 patients, hair transplant surgery was performed on 74 patients (61.7%). Twenty-five (20.8%) underwent both hair transplant surgery and complementary SMP. Sixteen (13.3%) patients received laser tattoo removal and underwent SMP anew. Five patients (4.2%) had a previous tattoo removed without additional treatment. Patients' subjective satisfaction scores averaged 4.5/5. The physician's objective satisfaction score was 4.6/5. CONCLUSION: In cases where SMP is inadequately performed, satisfactory results can be achieved through appropriate revisions, such as tattoo removal, repeated SMP, or hair transplant surgery to conceal the tattoo by highly experienced medical professionals. LEVEL OF EVIDENCE: IV.

2.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580110

RESUMO

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Assuntos
Antimônio , Ferro , Esgotos , Sulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Antimônio/análise , Anaerobiose , Carbono
3.
Membranes (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535288

RESUMO

A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling. Comparing simulation and experimental data, the model is shown to predict quite well the dynamics of an AnMBR. The simulated flux best fits the experimental flux with a correlation coefficient r2=0.968 for the calibration data set and r2=0.938 for the validation data set. General discussions are given on possible control strategies to limit fouling and optimize the flux production. We show in simulations that these strategies allow one to increase the mean production flux to 33 L/(h·m2),whereas without control, it was 18 L/(h·m2).

4.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540859

RESUMO

Pulse Spray Drying (PSD) has potential as a sustainable means of skimmed milk powder (SMP) production. In this study, powders were obtained from PSD using different drying outlet temperatures (70, 80, 90 and 100 °C), and their characteristics were compared to those of traditional Spray Drying (SD). Native whey proteins were well preserved and Solubility Indexes were over 98% in all cases, despite powders obtained by PSD displaying lower solubility than the SD ones. No visual difference was observable in the powders (ΔE < 2); however, PSD powders were found to be yellower with a higher Browning Index. The drying technology did not have a significant effect on powder moisture content and bulk density. Particle size distribution and scanning electron microscopy images confirmed the presence of fine particles (<10 µm) in all samples that might have provided poor flowability and wetting behavior (overall Carr Index and Hausner ratio were 33.86 ± 3.25% and 1.52 ± 0.07, respectively). Higher amounts of agglomerated particles were found at low temperatures in the products processed with both technologies, but PSD samples showed a narrower particle size distribution and hollow particles with more wrinkles on the surface (probably due to the fast evaporation rate in PSD). Overall, PSD provided SMP with comparable physicochemical characteristics to SD and, once optimized at the industrial level, could offer significant advantages in terms of thermal efficiency without significant modification of the final product quality.

5.
World J Microbiol Biotechnol ; 40(2): 45, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114754

RESUMO

Human senescence marker protein 30 (huSMP30) has been characterized as a multifaceted protein consisting of various enzymatic and cellular functions. It catalyzes the interconversion of L-gulonate and L-gulono-γ-lactone in the ascorbate biosynthesis pathway. Therefore, we hypothesized that it could be a potential anti-biofilm agent against pathogenic bacteria due to its lactonase activity. In order to corroborate this, the huSMP30 was recombinantly expressed, purified, and analyzed for its ability to inhibit Mycobacterium smegmatis biofilm formation, which showed a concentration-dependent inhibition as compared to the untreated control group. Further, in silico analysis was performed to redesign the huSMP30 with enhanced lactonase activity. Molecular docking analysis of the huSMP30 and lactone substrates facilitated the selection of three single amino acid substitutions (E18H, N154Q, and D204V), which were created using a PCR-based site-directed mutagenesis reaction. These mutant proteins and the wild-type huSMP30 were purified, and the effects on the enzymatic activity and biofilm formation were studied. The mutants E18H and D204V showed non-significant effects on specific lactonase activity, catalytic efficiency, and anti-biofilm property; however, the mutant N154Q showed significant improvement in the specific lactonase activity, catalytic efficiency, and inhibition in the biofilm formation. The protein stability analysis revealed that the wild-type huSMP30 and its designed mutants were stable at 37 °C for up to 4 days. In conclusion, the anti-biofilm property of the huSMP30 has been established, and an engineered version, N154Q, inhibits biofilm formation with greater efficiency. Human SMP30 is a versatile protein with multiple cellular and enzymatic functions, however, its anti-biofilm potential has not been explored. Our work presents the method to produce soluble and active huSMP30 in the E. coli expression system and establishes its role as an anti-biofilm agent against Mycobacterium smegmatis owing to its lactonase activity. Our results provide support for the future advancement of huSMP30 as a potential anti-biofilm agent targeting pathogenic Mycobacterium species.


Assuntos
Escherichia coli , Mycobacterium smegmatis , Humanos , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Lactonas/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico
6.
Environ Technol ; : 1-14, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37997956

RESUMO

In this research, we employed a synergistic three-dimensional (3D)-electrode technology in combination with a photocatalytic method to effectively treat wastewater containing chlorine derived from sulfonated phenolic resin (SMP). To modulate the band gap of single ZnO through semiconductor compounding, we successfully synthesized a ZnO/pyrolusite composite particle electrode on the surface of a pyrolusite particle electrode via a hydrothermal method. By incorporating MnO2 into pyrolusite, the ZnO band gap was modified, leading to a reduction in bandwidth of approximately 1.21 eV compared to pristine ZnO. Consequently, the light absorption range of the material was significantly broadened. Through the synergistic effect of photocatalysis, we achieved an impressive 96.45% removal rate of chemical oxygen demand (COD) in SMP wastewater, which effectively enhanced the photocatalytic performance of the material. Furthermore, our quenching experimental study confirmed the involvement of active chlorine species (ACl: Cl2, HClO, and ClO-), OH, h+, and O2- in the degradation process of SMP within the photocatalytic system constructed by the ZnO/pyrolusite composite particle electrode. The relative contributions were ranked as follows: ACl > h+ > ·OH > ·O2-.

7.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 388-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940580

RESUMO

Resveratrol (RSV) is a polyphenol with numerous biological functions, including anti-inflammatory, antioxidant, and anti-aging activities. The novel senescence marker protein-30 (SMP30) indicates aging, and it suppresses hepatic oxidative stress. However, the effects of RSV on SMP30 expression regulation remain unclear. We observed that RSV positively regulates SMP30 expression in rat hepatoma-derived FAO cells. However, this was abolished by Compound C and EX-527 that specifically inhibit AMP-activated protein kinase (AMPK) and Silent Information Regulator T1 (Sirt1), respectively. We predicted binding sites for AMPK, forkhead box protein O1 (Foxo1), and Sirt1 downstream molecules as possible SMP30 promoters using the JASPAR and UniProtKB databases. We identified a Foxo1 binding site in the promoter region of SMP30. Inhibiting Foxo1 with AS1842527 also decreased the RSV-induced upregulation of SMP30 expression. Moreover, RSV suppressed the substantial downregulation of SMP30 expression caused by oxidative stress and hydrogen peroxide (H2O2) and released accumulated lactate dehydrogenase. These results demonstrate that, as a novel food factor, RSV-induced upregulation of SMP30 by activating AMPK/Sirt1-Foxo1 signaling and may attenuates H2O2-induced oxidative damage. The findings of this study offer new perspectives of the anti-ageing properties of RSV.


Assuntos
Proteínas Quinases Ativadas por AMP , Peróxido de Hidrogênio , Ratos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Estresse Oxidativo , Fígado/metabolismo , Proteína Forkhead Box O1
8.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763512

RESUMO

Aiming at the problem of chemical-mechanics-hydro (C-M-H) action encountered by rocks in underground engineering, chemical damage variables, water damage variables, and force damage variables are introduced to define the degree of degradation of rock materials. Stone is selected as the sample for acid corrosion treatment at pH 3, 4, and 7, and a chemical damage factor is defined that coupled the pH value and duration of exposure. Then based on the spatial mobilized plane (SMP) criterion and the Lemaitre strain equivalence hypothesis, this research develops a constitutive model considering rock chemical corrosion-water-confining pressure damage. The proposed damage constitutive model employs the extremum method to ascertain the two Weibull distribution parameters (m and F0) by theoretical derivation and exhibits satisfactory conformity between the theoretical and experimental curves. The damage constitutive model can be consistent in the stress-strain characteristics of the rock triaxial compression process, which verifies the rationality and reliability of the model parameters. The model effectively represents the mechanical properties and damage characteristics of rocks when subjected to the combined influence of water chemistry and confinement. The presented model contributes to a better understanding of tangible rock-engineered structures subjected to chemical corrosion in underwater environments.

9.
Membranes (Basel) ; 13(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623751

RESUMO

Moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) constitute a highly effective wastewater treatment technology. The aim of this research work was to study the effect of commercial K1 biocarriers (MBBR-MBR K1 unit) and 3D-printed biocarriers fabricated from 13X and Halloysite (MBBR-MBR 13X-H unit), on the efficiency and the fouling rate of an MBBR-MBR unit during wastewater treatment. Various physicochemical parameters and trans-membrane pressure were measured. It was observed that in the MBBR-MBR K1 unit, membrane filtration improved reaching total membrane fouling at 43d, while in the MBBR-MBR 13X-H and in the control MBBR-MBR total fouling took place at about 32d. This is attributed to the large production of soluble microbial products (SMP) in the MBBR-MBR 13X-H, which resulted from a large amount of biofilm created in the 13X-H biocarriers. An optimal biodegradation of the organic load was concluded, and nitrification and denitrification processes were improved at the MBBR-MBR K1 and MBBR-MBR 13X-H units. The dry mass produced on the 13X-H biocarriers ranged at 4980-5711 mg, three orders of magnitude larger than that produced on the K1, which ranged at 2.9-4.6 mg. Finally, it was observed that mostly extracellular polymeric substances were produced in the biofilm of K1 biocarriers while in 13X-H mostly SMP.

10.
Infect Immun ; 91(7): e0018123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272791

RESUMO

Naegleria fowleri is an etiological agent that generates primary amoebic meningoencephalitis; unfortunately, no effective treatment or vaccine is available. The objective of this work was to determine the immunoprotective response of two vaccine antigens, as follows: (i) the polypeptide band of 19 kDa or (ii) a predicted immunogenic peptide from the membrane protein MP2CL5 (Smp145). Both antigens were administered intranasally in mice using cholera toxin (CT) as an adjuvant. The survival rate and immune response of immunized mice with both antigens and challenged with N. fowleri trophozoites were measured in the nose-associated lymphoid tissue (NALT) and nasal passages (NPs) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We also determined the immunolocalization of both antigens in N. fowleri trophozoites by confocal microscopy. Immunization with the polypeptide band of 19 kDa alone or coadministered with CT was able to confer 80% and 100% of protection, respectively. The immunization with both antigens (alone or coadministered with CT) showed an increase in T and B lymphocytes. In addition, there was an increase in the expression of integrin α4ß1 and IgA in the nasal cavity of protected mice, and the IgA, IgG, and IgM levels were increased in serum and nasal washes. The immunolocalization of both antigens in N. fowleri trophozoites was observed in the plasma membrane, specifically in pseudopod-like structures. The MP2CL5 antigens evaluated in this work were capable of conferring protection which would lead us to consider them as potential candidates for vaccines against meningitis caused by N. fowleri.


Assuntos
Meningite , Naegleria fowleri , Vacinas , Animais , Camundongos , Toxina da Cólera , Imunidade , Imunoglobulina A
11.
3D Print Addit Manuf ; 10(2): 279-288, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37123528

RESUMO

Extrusion-based (fused filament fabrication) three-dimensional (3D) printing of shape-memory polymers (SMPs) has the potential to rapidly produce highly customized smart-material parts. Yet, the effects of printing parameters on the shape-memory properties of printed SMPs remain poorly understood. To study the extent to which the 3D printing process affects the shape-memory properties of a printed SMP part, here temperature, extrusion rate multiplier, and fiber orientation were systematically varied, and their effect on shape-memory fixing and recovery ratios was evaluated. Fiber orientation, as determined by print path relative to the direction(s) of loading during shape-memory programming, was found to significantly impact the fixing ratio and the recovery ratio. Temperature and multiplier had little effect on either fixing ratio or recovery ratio. To facilitate the use of printed SMP parts in biomedical applications, a cell viability assay was performed on 3D-printed samples prepared using varied temperature and multiplier. Reduction in multiplier was found to increase cell viability. The results indicate that fiber orientation can critically impact the shape-memory functionality of 3D-printed SMP parts, and that multiplier can affect cytocompatibility of those parts. Thus, researchers and manufacturers employing SMPs in 3D-printed parts and devices could achieve improved part functionality if print paths are designed to align fiber direction with the axis(es) in which strain will be programmed and recovered and if the multiplier is optimized in biomedical applications in which a part will contact cells.

12.
Toxins (Basel) ; 15(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37235381

RESUMO

Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 µM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial
13.
Vaccines (Basel) ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37112704

RESUMO

Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.

14.
Sci Total Environ ; 882: 163319, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030357

RESUMO

Physiological changes with the assist role of soluble microbial products (SMP) of preserved denitrifying sludge (DS) undergoing long-term stress of starvation under different storage temperature is extremely important. In this study, SMP extracted from DS were added into DS in starvation condition under room temperature (15-20 °C), 4 °C and -20 °C with three different bio-augmentation phases of 10, 15 and 30 days. Experimental results showed that added SMP in room temperature was optimal for preservation of DS under starvation stress with optimized dosage of 2.0 mL mL-1 sludge and bio-augmentation phase of 10 d. SMP was more effective in maintaining the specific denitrification activity of DS, and it was nearly boosted to 94.1 % of control one due to assist of 2 times SMP addition with 10 days interval of each. Under assist of SMP, extracellular polymeric substances (EPS) secretion was enhanced as the defense layer to withstand starvation stress, and the protein may be utilized as an alternative substrate to gain energy, accelerate electron transport and transfer during denitrification process. This investigation revealed the feasibility of SMP as an economical and robust strategy for preservation of DS.


Assuntos
Desnitrificação , Esgotos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas , Proteínas , Reatores Biológicos
15.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112005

RESUMO

The emergence of COVID-19 has spurred demand for facemasks and prompted many studies aiming to develop masks that provide maximum protection. Filtration capacity and fit define the level of protection a mask can provide, and the fit is in large part determined by face shape and size. Due to differences in face dimensions and shapes, a mask of one size will not be likely to fit all faces. In this work, we examined shape memory polymers (SMPs) for producing facemasks that are able to alter their shape and size to fit every face. Polymer blends with and without additives or compatibilizers were melt-extruded, and their morphology, melting and crystallization behavior, mechanical properties, and shape memory (SM) behavior were characterized. All the blends had phase-separated morphology. The mechanical properties of the SMPs were modified by altering the content of polymers and compatibilizers or additives in the blends. The reversible and fixing phases are determined by the melting transitions. SM behavior is caused by physical interaction at the interface between the two phases in the blend and the crystallization of the reversible phase. The optimal SM blend and printing material for the mask was determined to be a polylactic acid (PLA)/polycaprolactone (PCL) blend with 30% PCL. A 3D-printed respirator mask was manufactured and fitted to several faces after being thermally activated at 65°C. The mask had excellent SM and could be molded and remolded to fit a variety of facial shapes and sizes. The mask also exhibited self-healing and healed from surface scratches.

16.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112039

RESUMO

Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high-low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10-17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5-10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering.

17.
Dis Aquat Organ ; 153: 95-105, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073799

RESUMO

White spot syndrome virus (WSSV), which causes white spot disease, is one of the notoriously feared infectious agents in the shrimp industry, inflicting estimated production losses world-wide of up to US$1 billion annually. Cost-effective accessible surveillance testing and targeted diagnosis are key to alerting shrimp industries and authorities worldwide early about WSSV carrier status in targeted shrimp populations. Here we present key validation pathway metrics for the Shrimp MultiPathTM (SMP) WSSV assay as part of the multi-pathogen detection platform. With superior throughput, fast turn-around time, and extremely low cost per test, the SMP WSSV assay achieves a high level of analytical sensitivity (~2.9 copies), perfect analytical specificity (~100%), and good intra- and inter-run repeatability (coefficient of variation <5%). The diagnostic metrics were estimated using Bayesian latent class analysis on data from 3 experimental shrimp populations from Latin America with distinct WSSV prevalence and yielded a diagnostic sensitivity of 95% and diagnostic specificity of 99% for SMP WSSV, which was higher than these parameters for the TaqMan quantitative PCR (qPCR) assays currently recommended by the World Organisation for Animal Health and the Commonwealth Scientific and Industrial Research Organisation. This paper additionally presents compelling data for the use of synthetic double-stranded DNA analyte spiked into pathogen-naïve shrimp tissue homogenate as a means to substitute clinical samples for assay validation pathways targeting rare pathogens. SMP WSSV shows analytical and diagnostic metrics comparable to qPCR-based assays and demonstrates fit-for-purpose performance for detection of WSSV in clinically diseased and apparently healthy animals.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Teorema de Bayes , Reação em Cadeia da Polimerase/veterinária
18.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904401

RESUMO

In this study, the mechanical as well as thermomechanical behaviors of shape memory PLA parts are presented. A total of 120 sets with five variable printing parameters were printed by the FDM method. The impact of the printing parameters on the tensile strength, viscoelastic performance, shape fixity, and recovery coefficients were studied. The results show that two printing parameters, the temperature of the extruder and the nozzle diameter, were more significant for the mechanical properties. The values of tensile strength varied from 32 MPa to 50 MPa. The use of a suitable Mooney-Rivlin model to describe the hyperelastic behavior of the material allowed us to gain a good fit for the experimental and simulation curves. For the first time, using this material and method of 3D printing, the thermomechanical analysis (TMA) allowed us to evaluate the thermal deformation of the sample and obtain values of the coefficient of thermal expansion (CTE) at different temperatures, directions, and running curves from 71.37 ppm/K to 276.53 ppm/K. Dynamic mechanical analysis (DMA) showed a similar characteristic of curves and similar values with a deviation of 1-2% despite different printing parameters. The glass transition temperature for all samples with different measurement curves ranged from 63-69 °C. A material crystallinity of 2.2%, considered by differential scanning calorimetry (DSC), confirmed its amorphous nature. From the SMP cycle test, we observed that the stronger the sample, the lower the fatigue from cycle to cycle observed when restoring the initial shape after deformation, while the fixation of the shape did not almost decrease with each SMP cycle and was close to 100%. Comprehensive study demonstrated a complex operational relationship between determined mechanical and thermomechanical properties, combining the characteristics of a thermoplastic material with the shape memory effect and FDM printing parameters.

19.
Cell Signal ; 102: 110533, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442591

RESUMO

Regucalcin (Mr âˆ¼ 33.38 kDa) is a calcium binding protein, discovered in rat liver. In humans, gene for regucalcin is located on chromosome-11 (p11.3-q11.2) consisting of seven exons and six introns. The protein differs from other calcium binding protein in the way that it lacks EF-hand motif of calcium binding domain. It is also called as Senescence Marker Protein-30 (SMP-30) as previously its weight assumes to be 30 kDa and expression of this protein decreases with aging in androgen independent manner. Among vertebrates, it is a highly conserved protein showing gene homology in Drosophila, Xenopus, fireflies and others too. It is primarily expressed in liver and kidney in addition to brain, lungs, and skeletal muscles. Regucalcin acts as a Ca2+ regulatory protein and controls various cellular functions in liver and other organs. It suppresses protein phosphatase, protein kinase, DNA and RNA synthesis. Published evidences suggest regucalcin to be a reliable biomarker in various disorders of liver, kidney, brain and ocular. In over expressed state, it subdues apoptosis in cloned rat hepatoma cells and also induces hyperlipidemia and osteoblastogenesis by regulating various factors. Owing to the multi-functionality of regucalcin this review is presented to elaborate its importance in order to understand its involvement in cellular signaling during various pathologies.


Assuntos
Proteínas de Ligação ao Cálcio , Peptídeos e Proteínas de Sinalização Intracelular , Transdução de Sinais , Animais , Humanos , Ratos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Sulfotransferases/metabolismo , Fatores de Transcrição/metabolismo
20.
Sci Total Environ ; 858(Pt 2): 159812, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374727

RESUMO

This paper presents the first study to quantify and demonstrate the interactions between SBR operating conditions (hydraulic retention time (HRT) and temperature) and soluble microbial product (SMP) generation, as well as the impact of SBR operating conditions and filtration temperature on fouling of membranes used in tertiary treatment. Reducing SBR operating HRT from 20 to 10 h resulted in an increase in SMP concentrations, however, the extent of the increase in high and low molecular weight (MW) organics was different for the effluents from SBRs operated at 8 and 20 °C. Results of SMP modelling demonstrated that a reduction in SBR operating HRT induced decreased utilization associated product (UAP) yields and the influence was greater at the SBR operating temperature of 8 °C. In contrast, biomass associated product (BAP) yields were relatively stable with SBR operating HRT but greater at lower SBR operating temperature. The effects of SBR operating HRT and temperature on fouling indices were also interactive. Reducing SBR operating HRT led to a lower increase in hydraulically reversible resistances and a greater increase in hydraulically irreversible resistances for the effluent from the SBR operated at 8 °C. Reducing the filtration temperature resulted in additional increase in membrane resistances, and the increase was greater at lower SBR operating HRT. The contribution of filtration temperature was observed to have the greatest impact on membrane resistances, followed in importance by SBR operating HRT and temperature. The comprehensive analysis undertaken in the present study provides insights into the interaction between secondary and tertiary operations on fouling development. The results can be employed to understand the limits of fouling control for tertiary treatment under challenging conditions.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Temperatura , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA