Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
BMC Plant Biol ; 24(1): 805, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187766

RESUMO

BACKGROUND: Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ exchanger, is essential for plant salt tolerance. Salt damage is a significant abiotic stress that impacts plant species globally. All living organisms require copper (Cu), a necessary micronutrient and a protein cofactor for many biological and physiological processes. High Cu concentrations, however, may result in pollution that inhibits the growth and development of plants. The function and production of mangrove ecosystems are significantly impacted by rising salinity and copper contamination. RESULTS: A genome-wide analysis and bioinformatics techniques were used in this study to identify 20 SOS1 genes in the genome of Kandelia obovata. Most of the SOS1 genes were found on the plasma membrane and dispersed over 11 of the 18 chromosomes. Based on phylogenetic analysis, KoSOS1s can be categorized into four groups, similar to Solanum tuberosum. Kandelia obovata's SOS1 gene family expanded due to tandem and segmental duplication. These SOS1 homologs shared similar protein structures, according to the results of the conserved motif analysis. The coding regions of 20 KoSOS1 genes consist of amino acids ranging from 466 to 1221, while the exons include amino acids ranging from 3 to 23. In addition, we found that the 2.0 kb upstream promoter region of the KoSOS1s gene contains several cis-elements associated with phytohormones and stress responses. According to the expression experiments, seven randomly chosen genes experienced up- and down-regulation of their expression levels in response to copper (CuCl2) and salt stressors. CONCLUSIONS: For the first time, this work systematically identified SOS1 genes in Kandelia obovata. Our investigations also encompassed physicochemical properties, evolution, and expression patterns, thereby furnishing a theoretical framework for subsequent research endeavours aimed at functionally characterizing the Kandelia obovata SOS1 genes throughout the life cycle of plants.


Assuntos
Cobre , Filogenia , Proteínas de Plantas , Rhizophoraceae , Cobre/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiologia , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Estresse Fisiológico/genética , Genes de Plantas , Tolerância ao Sal/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo
2.
J Biol Chem ; : 107650, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122002

RESUMO

Antimicrobial resistance (AMR) is a serious global threat demanding innovations for effective control of pathogens. The bacterial SOS response, regulated by the master regulators, LexA and RecA, contributes to AMR through advantageous mutations. Targeting the LexA/RecA system with a novel inhibitor could suppress the SOS response and potentially reduce the occurrence of AMR. RecA presents a challenge as a therapeutic target due to its conserved structure and function across species, including humans. Conversely, LexA which is absent in eukaryotes, can be potentially targeted, due to its involvement in SOS response that is majorly responsible for adaptive mutagenesis and AMR. Our studies combining bioinformatic, biochemical, biophysical, molecular, and cell-based assays present a unique inhibitor of mycobacterial LexA, wherein we show that the inhibitor interacts directly with the catalytic site residues of LexA of Mycobacterium tuberculosis (Mtb), consequently hindering its cleavage, suppressing SOS response thereby reducing mutation frequency and AMR.

3.
Res Microbiol ; : 104230, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089347

RESUMO

The effects of ionizing radiation (IR) on the protein dynamics of cold-stressed cells of a radioresistant actinobacterium, Kocuria rhizophila PT10, isolated from the rhizosphere of the desert plant Panicum turgidum were investigated using a shotgun methodology based on nanoflow liquid chromatography coupled to tandem mass spectrometry. Overall, 1487 proteins were certified, and their abundances were compared between the irradiated condition and control. IR of cold-acclimated PT10 triggered the over-abundance of proteins involved in (1) a strong transcriptional regulation, (2) amidation of peptidoglycan and preservation of cell envelope integrity, (3) detoxification of reactive electrophiles and regulation of the redox status of proteins, (4) base excision repair and prevention of mutagenesis and (5) the tricarboxylic acid (TCA) cycle and production of fatty acids. Also, one of the more significant findings to emerge from this study is the SOS response of stressed PT10. Moreover, a comparison of top hits radio-modulated proteins of cold-acclimated PT10 with proteomics data from gamma-irradiated Deinococcus deserti showed that stressed PT10 has a specific response characterised by a high over-abundance of NemA, GatD, and UdgB.

4.
Oncol Res ; 32(8): 1257-1264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055890

RESUMO

The Kirsten rat sarcoma virus-son of sevenless 1 (KRAS-SOS1) axis drives tumor growth preferentially in pancreatic, colon, and lung cancer. Now, KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS. However, the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%, lasting for a mean period of 8 months. One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras (PROTACs), which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity. Accordingly, PROTACs have been developed based on KRAS- or SOS1-directed inhibitors coupled to either von Hippel-Lindau (VHL) or Cereblon (CRBN) ligands that invoke the proteasomal degradation. Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear. The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals. Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase. Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.


Assuntos
Proteólise , Proteínas Proto-Oncogênicas p21(ras) , Proteína SOS1 , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Quimera de Direcionamento de Proteólise
5.
Intern Med J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076028

RESUMO

Sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD) is a life-threatening complication which can develop after haemopoietic stem cell transplantation (HSCT) and some antibody-drug conjugates. Several SOS/VOD diagnostic and management guidelines exist, with the most recent and refined being the European Society for Blood and Marrow Transplantation adult and paediatric guidelines. Timely diagnosis and effective management (including the availability of therapeutic options) significantly contribute to improved patient outcomes. In Australia and New Zealand, there is variability in clinical practice and access to SOS/VOD therapies. This review aims to summarise the current evidence for SOS/VOD diagnosis, prevention and treatment and to provide recommendations for SOS/VOD in the context of contemporary Australasian HSCT clinical practice.

6.
Biochem Biophys Res Commun ; 723: 150190, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838447

RESUMO

Soil salinity pose a significant challenge to global agriculture, threatening crop yields and food security. Understanding the salt tolerance mechanisms of plants is crucial for improving their survival under salt stress. AFP2, a negative regulator of ABA signaling, has been shown to play a crucial role in salt stress tolerance during seed germination. Mutations in AFP2 gene lead to increased sensitivity to salt stress. However, the underline mechanisms by which AFP2 regulates seed germination under salt stress remain elusive. In this study, we identified a protein interaction between AFP2 and SOS2, a Ser/Thr protein kinase known to play a critical role in salt stress response. Using a combination of genetic, biochemical, and physiological approaches, we investigated the role of the SOS2-AFP2 module in regulating seed germination under salt stress. Our findings reveal that SOS2 physically interacts with AFP2 and stabilizes it, leading to the degradation of the ABI5 protein, a negative transcription factor in seed germination under salt stress. This study sheds light on previously unknown connections within salt stress and ABA signaling, paving the way for novel strategies to enhance plant resilience against environmental challenges.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Estresse Salino , Sementes , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise/efeitos dos fármacos , Tolerância ao Sal/genética , Sementes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/genética , Transdução de Sinais/efeitos dos fármacos
7.
ACS Synth Biol ; 13(7): 2045-2059, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38934464

RESUMO

As the availability of data sets increases, meta-analysis leveraging aggregated and interoperable data types is proving valuable. This study leveraged a meta-analysis workflow to identify mutations that could improve robustness to reactive oxygen species (ROS) stresses using an industrially important melatonin production strain as an example. ROS stresses often occur during cultivation and negatively affect strain performance. Cellular response to ROS is also linked to the SOS response and resistance to pH fluctuations, which is important to strain robustness in large-scale biomanufacturing. This work integrated more than 7000 E. coli adaptive laboratory evolution (ALE) mutations across 59 experiments to statistically associate mutated genes to 2 ROS tolerance ALE conditions from 72 unique conditions. Mutant oxyR, fur, iscR, and ygfZ were significantly associated and hypothesized to contribute fitness in ROS stress. Across these genes, 259 total mutations were inspected in conjunction with transcriptomics from 46 iModulon experiments. Ten mutations were chosen for reintroduction based on mutation clustering and coinciding transcriptional changes as evidence of fitness impact. Strains with mutations reintroduced into oxyR, fur, iscR, and ygfZ exhibited increased tolerance to H2O2 and acid stress and reduced SOS response, all of which are related to ROS. Additionally, new evidence was generated toward understanding the function of ygfZ, an uncharacterized gene. This meta-analysis approach utilized aggregated and interoperable multiomics data sets to identify mutations conferring industrially relevant phenotypes with the least drawbacks, describing an approach for data-driven strain engineering to optimize microbial cell factories.


Assuntos
Escherichia coli , Mutação , Estresse Oxidativo , Espécies Reativas de Oxigênio , Estresse Oxidativo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Melatonina/metabolismo , Evolução Molecular Direcionada/métodos
8.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884747

RESUMO

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Assuntos
Aorta Torácica , Valva Aórtica , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doença da Válvula Aórtica Bicúspide/genética , Estenose da Valva Pulmonar/genética , Mutação , Receptor Notch1/genética , Valvopatia Aórtica/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Calcinose/genética , Calcinose/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
9.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892328

RESUMO

Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.


Assuntos
Antibacterianos , Ciprofloxacina , Curcumina , Fármacos Fotossensibilizantes , Recombinases Rec A , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Recombinases Rec A/metabolismo , Recombinases Rec A/genética , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Fotoquimioterapia/métodos , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Povidona/química , Povidona/farmacologia , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Luz , Proteínas de Ligação a DNA
10.
Proc Natl Acad Sci U S A ; 121(27): e2407832121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38935560

RESUMO

In 1967, in this journal, Evelyn Witkin proposed the existence of a coordinated DNA damage response in Escherichia coli, which later came to be called the "SOS response." We revisited this response using the replication inhibitor azidothymidine (AZT) and RNA-Seq analysis and identified several features. We confirm the induction of classic Save our ship (SOS) loci and identify several genes, including many of the pyrimidine pathway, that have not been previously demonstrated to be DNA damage-inducible. Despite a strong dependence on LexA, these genes lack LexA boxes and their regulation by LexA is likely to be indirect via unknown factors. We show that the transcription factor "stringent starvation protein" SspA is as important as LexA in the regulation of AZT-induced genes and that the genes activated by SspA change dramatically after AZT exposure. Our experiments identify additional LexA-independent DNA damage inducible genes, including 22 small RNA genes, some of which appear to activated by SspA. Motility and chemotaxis genes are strongly down-regulated by AZT, possibly as a result of one of more of the small RNAs or other transcription factors such as AppY and GadE, whose expression is elevated by AZT. Genes controlling the iron siderophore, enterobactin, and iron homeostasis are also strongly induced, independent of LexA. We confirm that IraD antiadaptor protein is induced independent of LexA and that a second antiadaptor, IraM is likewise strongly AZT-inducible, independent of LexA, suggesting that RpoS stabilization via these antiadaptor proteins is an integral part of replication stress tolerance.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Replicação do DNA/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Serina Endopeptidases
11.
ISA Trans ; 151: 212-220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890017

RESUMO

This work explores the polynomial fuzzy stabilization for positive systems. The traditional quadratic Lyapunov function and basic stability analysis may not be favourable for stability investigation due to the absence of the positivity property and membership functions. Therefore, a fuzzy co-positive polynomial Lyapunov-Krasovskii (FCPL) function which considers the positivity is proposed firstly through an imperfect premise matching (IPM) approach. Secondly, the symbol transfer technique which takes into account fuzzy membership knowledge relaxes the stability conditions. The number of symbols is reduced by two constraints: (1) the last and next moments of the membership functions of the FCPL function; (2) membership functions of the fuzzy model and the controller. Finally, the polynomial fuzzy controller with symbols is obtained. Two examples are implemented to verify the proposed methods.

12.
Am J Chin Med ; 52(3): 885-904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716619

RESUMO

Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Proteína SOS1 , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Humanos , Feminino , Regulação para Baixo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Camundongos Nus , Saponinas/farmacologia , Saponinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Fitoterapia , Antineoplásicos Fitogênicos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C
13.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743266

RESUMO

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Assuntos
Arabidopsis , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Sequência de Aminoácidos , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
14.
J Comput Chem ; 45(23): 1968-1979, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703360

RESUMO

A computational methodology, founded on chemical concepts, is presented for interpreting the role of nuclear motion in the electron transport through single-molecule junctions (SMJ) using many-electron ab initio quantum chemical calculations. Within this approach the many-electron states of the system, computed at the SOS-ADC(2) level, are followed along the individual normal modes of the encapsulated molecules. The inspection of the changes in the partial charge distribution of the many-electron states allows the quantification of the electron transport and the estimation of transmission probabilities. This analysis improves the understanding of the relationship between internal motions and electron transport. Two SMJ model systems are studied for validation purposes, constructed from a conductor (BDA, benzene-1,4-diamine) and an insulator molecule (DABCO, 1,4-diazabicyclo[2.2.2]octane). The trends of the resulting transmission probabilities are in agreement with the experimental observations, demonstrating the capability of the approach to distinguish between conductor and insulator type systems, thereby offering a straightforward and cost-effective tool for such classifications via quantum chemical calculations.

15.
Cancers (Basel) ; 16(10)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791980

RESUMO

Preclinical studies rarely test the efficacy of therapies in both sexes. The field of oncology is no exception in this regard. In a model of syngeneic, orthotopic, metastasized pancreatic ductal adenocarcinoma we evaluated the impact of sex on pathological features of this disease as well as on the efficacy and possible adverse side effects of a novel, small molecule-based therapy inhibiting KRAS:SOS1, MEK1/2 and PI3K signaling in male and female C57BL/6J mice. Male mice had less tumor infiltration of CD8-positive cells, developed bigger tumors, had more lung metastasis and a lower probability of survival compared to female mice. These more severe pathological features in male animals were accompanied by higher distress at the end of the experiment. The evaluated inhibitors BI-3406, trametinib and BKM120 showed synergistic effects in vitro. This combinatorial therapy reduced tumor weight more efficiently in male animals, although the drug concentrations were similar in the tumors of both sexes. These results underline the importance of sex-specific preclinical research and at the same time provide a solid basis for future studies with the tested compounds.

16.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697010

RESUMO

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Assuntos
DNA Bacteriano , Escherichia coli , Microscopia de Fluorescência , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Imagem Individual de Molécula/métodos , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Resposta SOS em Genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ligação Proteica , Recombinases Rec A/metabolismo , Recombinases Rec A/genética , Pinças Ópticas
17.
Ann Transl Med ; 12(2): 29, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721455

RESUMO

Simulated operations (SOs) are a direct application of the Integral Theory (IT) mantras, "structure and function are related" and "restore the structure and you will improve the function". SOs performed in a clinic setting, are the most effective way possible to test the validity of the IT predictions: stress urinary incontinence (SUI) and urge are mainly caused by laxity in the vagina or its supporting ligaments. The SUI prediction of the IT is validated if a hemostat applied vaginally in the position of the midurethra to mechanically support the pubourethral ligament (PUL) immediately stops urine loss on coughing. The urge and chronic pelvic pain (CPP) predictions of the IT are similarly validated if a patient states her urge and pain symptoms are relieved by insertion of the bottom blade of a bivalve speculum which supports the uterosacral ligaments (USLs). An important use of SOs is to preoperatively assess (by the hemostat test) whether sling surgery for SUI is likely to cure the patient. Similarly, the speculum is very useful for diagnosing whether severe urge or pain symptoms in a woman with minimal prolapse are originating from weak USLs. If digital support of a cystocele relieves urge symptoms, the patient can reasonably be informed that a cystocele repair should improve the urge as well her cystocele prolapse. Used intraoperatively under spinal anesthesia, SOs can determine whether a sling is sufficiently tight to reverse the loose PUL which is causing the SUI. Approximating both cardinal ligaments (CLs) intraoperatively can result in a remarkable disappearance of a transverese defect cystocele; approximating USLs intraoperatively can give an indication of how effective a USL plication would be surgically.

18.
Environ Sci Technol ; 58(21): 9017-9030, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753980

RESUMO

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.


Assuntos
Conjugação Genética , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Transferência Genética Horizontal
19.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714262

RESUMO

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Proteína SOS1 , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Quimera de Direcionamento de Proteólise
20.
Curr Issues Mol Biol ; 46(5): 4787-4802, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785556

RESUMO

Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA