Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535087

RESUMO

PURPOSE: Pancreatic cancer (PACA) is one of the most fatal malignancies worldwide. Immunotherapy is largely ineffective in patients with PACA. T-cell exhaustion contributes to immunotherapy resistance. We investigated the prognostic potential of T-cell exhaustion-related genes (TEXGs). METHODS: A single-cell RNA (scRNA) sequencing dataset from Tumor Immune Single-Cell Hub (TISCH) and bulk sequencing datasets from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were used to screen differentially expressed TEXGs. Kaplan-Meier survival, LASSO regression, and univariate/multivariate Cox regression analyses were performed to construct a TEXG risk model. This model was used to predict the prognosis, tumor immune microenvironment, and immunotherapy response. The PACA cohorts from the ICGC and GSE71729 datasets were used to validate the risk model. Pan-cancer expression of SPOCK2 was determined using the TISCH database. RESULTS: A six-gene (SPOCK2, MT1X, LIPH, RARRES3, EMP1, and MEG3) risk model was constructed. Patients with low risk had prolonged survival times in both the training (TCGA-PAAD, n = 178) and validation (ICGC-PACA-CA, ICGC-PAAD-US, and GSE71729, n = 412) datasets. Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic variable for PACA. High-risk patients correlated with their immunosuppressive status. Immunohistochemical staining confirmed the changes in TEXGs in clinical samples. Moreover, pan-cancer scRNA sequencing datasets from TISCH analysis indicated that SPOCK2 may be a novel marker of exhausted CD8+ T-cells. CONCLUSION: We established and validated a T-cell exhaustion-related prognostic signature for patients with PACA. Moreover, our study suggests that SPOCK2 is a novel marker of exhausted CD8+ T cells.

2.
J Neuroinflammation ; 21(1): 57, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388415

RESUMO

BACKGROUND: Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS: Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS: We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1ß production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS: Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1ß production to achieve positive promotion of NP.


Assuntos
Astrócitos , Neuralgia , Animais , Ratos , Astrócitos/metabolismo , Constrição , Metaloproteinase 14 da Matriz , Metaloproteinase 2 da Matriz , Neuralgia/etiologia , Neuralgia/metabolismo , Ratos Sprague-Dawley
3.
J Cancer Res Clin Oncol ; 149(11): 9191-9200, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37188984

RESUMO

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) represents a widespread form of malignant pancreatic neoplasms and a leading oncologic cause of death in Europe and the USA. Despite advances in understanding its molecular biology, the 5-year survival rate remains low at 10%. The extracellular matrix in PDAC contains proteins, including SPOCK2, which are essential for tumorigenicity and drug resistance. The present study aims to explore the possible role of SPOCK2 in the pathogenesis of PDAC. MATERIALS AND METHODS: Expression of SPOCK2 was evaluated in 7 PDAC cell lines and 1 normal pancreatic cell line using quantitative RT-PCR. Demethylation of the gene was carried out using 5-aza-2'-deoxycytidine (5-aza-dC) treatment with subsequent validation Western Blot analysis. In vitro downregulation of SPOCK2 gene was performed using siRNA transfection. MTT and transwell assays were employed to evaluate the impact of the SPOK2 demethylation on the proliferation and migration of PDAC cells. KM Plotter was applied to analyze a correlation between SPOCK2 mRNA expression and the survival of PDAC patients. RESULTS: In contrast to the normal pancreatic cell line, SPOCK2 expression was significantly downregulated in PDAC cell lines. Treatment with 5-aza-dC, led to increase in SPOCK2 expression in the cell lines tested. Importantly, compared with control cells, transfected with SPOCK2 siRNA cells exhibited increased growth rates and more migration ability. Finally, we demonstrated that a high SPOCK2 expression level correlated with longer overall survival of patients with PDAC. CONCLUSION: The expression of SPOCK2 is downregulated in PDAC as a result of hypermethylation of its corresponding gene. SPOCK2 expression as well as the demethylation of its gene could be a potential marker for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Prognóstico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Proteoglicanas/uso terapêutico , Neoplasias Pancreáticas
4.
Respir Res ; 24(1): 127, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165378

RESUMO

BACKGROUND: Congenital pulmonary airway malformation (CPAM) is the most frequent pulmonary developmental malformation and the pathophysiology remains poorly understood. This study aimed to identify the characteristic gene expression patterns and the marker genes essential to CPAM. METHODS: Tissues from the cystic area displaying CPAM and the area of normal appearance were obtained during surgery. Bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) were performed for integrating analysis. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify specifically expressed genes to CPAM. RESULTS: In total, 2074 genes were significantly differentially expressed between the CPAM and control areas. Of these differentially expressed genes (DEGs), 1675 genes were up-regulated and 399 genes were down-regulated. Gene ontology analysis revealed these DEGs were specifically enriched in ciliated epithelium and involved in immune response. We also identified several CPAM-related modules by iWGCNA, among them, P15_I4_M3 module was the most influential module for distinguishing CPAMs from controls. By combining the analysis of the expression dataset from RNA-seq and scRNA-seq, SPOCK2, STX11, and ZNF331 were highlighted in CPAM. CONCLUSIONS: Through our analysis of expression datasets from both scRNA-seq and bulk RNA-seq of tissues obtained from patients with CPAM, we identified the characteristic gene expression patterns associated with the condition. Our findings suggest that SPOCK2 could be a potential biomarker gene for the diagnosis and therapeutic target in the development of CPAM, whereas STX11 and ZNF331 might serve as prognostic markers for this condition. Further investigations with larger samples and function studies are necessary to confirm the involvement of these genes in CPAM.


Assuntos
Malformação Adenomatoide Cística Congênita do Pulmão , Humanos , Malformação Adenomatoide Cística Congênita do Pulmão/metabolismo , Pulmão/metabolismo , Biomarcadores/metabolismo , Epitélio/metabolismo , RNA/genética , RNA/metabolismo , Proteoglicanas
5.
Hum Cell ; 36(2): 812-821, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629984

RESUMO

Enhancer of zeste homolog 2 (EZH2) is an important epigenetic regulator, and is associated with the malignant progression of lung cancer. However, the mechanisms of EZH2 on lung adenocarcinoma (LUAD) remain unclear. The relationship between EZH2 and SPOCK2 or SPRED1 was confirmed by dual-luciferase reporter assay. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to examine the expression of SPOCK2 and SPRED1 and their prognostic values of LUAD. The effects of SPOCK2 and SPRED1 on the biological characters of LUAD cells were identified on functional assays in vitro and in vivo. Our results showed that EZH2 suppressed the expression and transcriptional activity of SPOCK2 and SPRED1, and these effects were reversed by the EZH2 inhibitor, Tazemetostat. SPOCK2 and SPRED1 were expressed at low levels in LUAD patients, and a high expression level of SPOCK2 or SPRED1 predicted better survival. Moreover, overexpression of SPOCK2 or SPRED1 could inhibit tumoral proliferation, migration ratio, and invasion activity in vitro as well as retard tumor growth in vivo. However, EZH2 elevation could rescue these impacts and accelerate LUAD progression. Our findings reveal that SPOCK2 and SPRED1 are epigenetically suppressed by EZH2 and may act as novel regulators to inhibit the proliferation, migration, and invasion of LUAD cells.


Assuntos
Adenocarcinoma de Pulmão , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Proteoglicanas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteoglicanas/genética , Proteoglicanas/metabolismo
6.
Front Genet ; 13: 878123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246613

RESUMO

Background: SPOCK2 is a member of the SPOCK family, a 424-amino acid protein that binds to glycosaminoglycans to form proteoglycans. The purpose of this study was to explore expression profile of SPOCK2, and evaluate prognostic potential and its correlation with immune infiltration in high-grade serous ovarian cancer (HGSOC). Methods: Expression of SPOCK2 mRNA and protein between normal and tumor tissues were analyzed using the Cancer Genome Atlas database (TCGA), Gene Expression Omnibus (GEO), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA) databases. Receiver operating characteristic (ROC) curve was used to evaluate diagnostic performance of SPOCK2. Kaplan-Meier method and Cox regression analysis were conducted to assess the effect of SPOCK2 on survival. Nomogram was used to predict the impact of SPOCK2 on prognosis. LinkedOmics were used to find correlated genes and perform functional enrichment analyses. The relationships between SPOCK2 and tumor infiltrating lymphocytes (TILs) were determined by tumor-immune system interaction database (TISIDB) and GSVA package (V1.34.0). Results: SPOCK2 was highly expressed in HGSOC tissue compared to normal tissue at both mRNA (p < 0.001) and protein (p = 0.03) levels. The area under the curve (AUC) is 0.894 (CI: 0.865-0.923). Kaplan-Meier analysis showed that HGSOC patients with high-level SPOCK2 mRNA expression had a worse overall survival (OS) than those with a low expression (HR = 1.45, p = 0.005). Univariate logistic regression analysis found that age, primary therapy outcome, tumor status, tumor residual, and SPOCK2 expression level were significantly associated with OS (p < 0.05). The nomogram model indicated an effective predictive performance of SPOCK2. Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) term analyses showed that SPOCK2 were mainly involved in regulating extracellular matrix. Immune infiltration analysis showed that SPOCK2 may correlate with abundance of TILs. Conclusion: SPOCK2 has potentials to estimate diagnosis and prognosis for HGSOC and is involved in regulating extracellular matrix and immune cell infiltration.

7.
Cancers (Basel) ; 13(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203581

RESUMO

BACKGROUND: Brain metastasis is considered one of the major causes of mortality in breast cancer patients. To invade the brain, tumor cells need to pass the blood-brain barrier by mechanisms that are partially understood. In primary ER-negative breast cancers that developed brain metastases, we found that some of the differentially expressed genes play roles in the T cell response. The present study aimed to identify genes involved in the formation of brain metastasis independently from the T cell response. METHOD: Previously profiled primary breast cancer samples were reanalyzed. Genes that were found to be differentially expressed were confirmed by RT-PCR and by immunohistochemistry using an independent cohort of samples. RESULTS: BOC, SPOCK2, and GJD3 were overexpressed in the primary breast tumors that developed brain metastasis. BOC expression was successfully validated at the protein level. SPOCK2 was validated at both mRNA and protein levels. SPOCK2 and GJD3 mRNA overexpression were also found to be associated with cerebral metastasis in an external online database consisting of 204 primary breast cancers. CONCLUSION: The overexpression of BOC, SPOCK2, and GJD3 is associated with the invasion of breast cancer into the brain. Further studies to determine their specific function and potential value as brain metastasis biomarkers are required.

8.
Gynecol Endocrinol ; 37(3): 273-277, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32851893

RESUMO

PURPOSE: A previous study found that a lack of SPOCK2 expression was an early event that occurs during the malignant transformation of endometriosis (EMS); however, the role played by SPOCK2 in the pathogenesis of endometriosis and its malignant transformation remains unclear. MATERIALS AND METHODS: In this study, SPOCK2 expression in human endometrial epithelial cells (hEECs) was downregulated by transfection with shRNA, and the biological behavior of the transfected cells was observed. RESULTS: We found that downregulation of SPOCK2 promoted cell proliferation, adhesion, and invasion. CONCLUSIONS: Our data suggest that downregulation of SPOCK2 might participate in the pathogenesis and progression of EMS, as well as its malignant transformation, by promoting the proliferation, adhesion, and invasion of endometrial epithelial cells.


Assuntos
Endométrio/citologia , Células Epiteliais/fisiologia , Proteoglicanas/genética , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Endométrio/fisiologia , Feminino , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteoglicanas/fisiologia
9.
Front Genet ; 11: 588499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244319

RESUMO

Lung adenocarcinoma (LUAD) is one of the major types of lung cancer. Tumor-infiltrating immune cells (TIICs) are positively associated with overall survival (OS) in LUAD. The SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 2 (SPOCK2) is a complex type of secreted proteoglycan involved in forming a protective barrier against viral infection. The purpose of this study was to investigate the relationship between SPOCK2 and TIICs and the prognostic role of SPOCK2 in LUAD. The GEPIA2, GEO, CPTAC, and HPA databases were analyzed to examine both the mRNA and protein expression of SPOCK2 in LUAD. GEPIA2 and the Kaplan-Meier Plotter (KM Plotter) were used to evaluate the prognostic value of SPOCK2 in LUAD patients. TCGA data were examined for a correlation between SPOCK2 expression and clinical characteristics. Gene enrichment analyses were performed to explore the underlying mechanism of SPOCK2 based on LinkedOmics. RegNetwork was used to predict the regulators of SPOCK2. The correlation between SPOCK2 and TIICs, including immune infiltration level and relative proportion was investigated via TIMER. KM Plotter was also used to evaluate the prognostic role of SPOCK2 expression in LUAD with enriched and decreased TIIC subgroups. We found SPOCK2 was significantly downregulated in LUAD compared with that in non-tumor controls and was correlated with clinical parameters. Moreover, a high SPOCK2 expression level predicted better survival. The SPOCK2-associated regulatory network was constructed. SPOCK2 influenced the TIIC infiltration level and relative proportion in LUAD. Furthermore, a high SPOCK2 expression level was associated with a favorable prognosis in enriched CD4 + T cells and macrophage subgroups in LUAD. In conclusion, a high level of SPOCK2 expression predicted favorable prognosis and was significantly correlated with TIICs in LUAD. Therefore, the expression of SPOCK2 may affect the prognosis of LUAD partly due to TIICs.

10.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L71-L81, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374670

RESUMO

SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 2 (SPOCK2) was previously associated with genetic susceptibility to bronchopulmonary dysplasia in a French population of very preterm neonates. Its expression increases during lung development and is increased after exposure of rat pups to hyperoxia compared with controls bred in room air. To further investigate the role of SPOCK2 during lung development, we designed two mouse models, one that uses a specific anti-Spock2 antibody and one that reproduces the hyperoxia-induced Spock2 expression with a transgenic mouse model resulting in a conditional and lung-targeted overexpression of Spock2. When mice were bred under hyperoxic conditions, treatment with anti-Spock2 antibodies significantly improved alveolarization. Lung overexpression of Spock2 altered alveolar development in pups bred in room air and worsened hyperoxia-induced lesions. Neither treatment with anti-Spock2 antibody nor overexpression of Spock2 was associated with abnormal activation of matrix metalloproteinase-2. These two models did not alter the expression of known players in alveolar development. This study brings strong arguments for the deleterious role of SPOCK2 on lung alveolar development especially after lung injury, suggesting its role in bronchopulmonary dysplasia susceptibility. These effects are not mediated by a deregulation in metalloproteases activity and in expression of factors essential to normal alveolarization. The balance between types 1 and 2 epithelial alveolar cells may be involved.


Assuntos
Hiperóxia/patologia , Proteoglicanas/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Animais , Anticorpos/metabolismo , Ativação Enzimática , Hiperóxia/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
11.
Reprod Sci ; 27(7): 1391-1399, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32430715

RESUMO

Abnormal expression of SPARC (osteonectin), cwcv and kazal-like domains proteoglycan 2 (SPOCK2) plays a significant role in the development and progression of various human cancers, yet a relationship between SPOCK2 and endometrial cancer (EC) has not been reported. Here, we assessed the potential role and mechanism by which SPOCK2 acts in the pathogenesis and progression of EC. First, protein expression of SPOCK2 in EC tissue from patients was detected by immunohistochemistry and associated clinical data were analyzed. Then, HEC-1A and Ishikawa cells were transfected with an adenoviral vector containing an SPOCK2 recombinant fragment and the biological behavior of transfected cells was observed. Finally, the expression of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP2 in the transfected cells was detected by Western blot and zymography gel assay to analyze the effect of SPOCK2 on the regulation of the MT1-MMP/MMP2 pathway. We found that there was significantly less SPOCK2 protein expression in the EC tissue than in the normal endometrium tissue, and lack of SPOCK2 protein expression in EC tissue was associated with distant metastasis and myometrial invasion. Upregulation of SPOCK2 in HEC-1A and Ishikawa cells inhibited cell proliferation, invasion, adhesion, and apoptosis. Upregulation of SPOCK2 inhibited the expression of MT1-MMP and MMP2 and activation of MMP2 in HEC-1A and Ishikawa cells. Collectively, our data indicated that SPOCK2 contributed to the progression of EC by regulating the biological behavior of cancer cells, which is achieved partly through regulating protein expression of MT1-MMP and MMP2 and activation of MMP2.


Assuntos
Neoplasias do Endométrio/metabolismo , Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 14 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/biossíntese , Proteoglicanas/biossíntese , Adulto , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Endométrio/patologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Pessoa de Meia-Idade , Proteoglicanas/genética
12.
Aging (Albany NY) ; 11(23): 11416-11439, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794425

RESUMO

OBJECTIVE: Ovarian cancer is one of the most common and lethal cancer types in women. The molecular mechanism of ovarian cancer progression is still unclear. RESULTS: Here, we first reported that expression levels of three genes, GJB2, S100A2 and SPOCK2, were significantly higher in advanced stage than that in early stage of ovarian cancer, and upregulation of them indicated poor prognosis of patients with ovarian cancer. Subsequently, 8, 6 and 20 miRNAs were predicted to target GJB2, S100A2 and SPOCK2, respectively. Among these miRNA-mRNA pairs, hsa-miR-363-3p-SPOCK2 axis was the most potential in suppressing progression of ovarian cancer. Mechanistically, we found that hsa-miR-363-3p-SPOCK2 axis was involved in regulation of actin cytoskeleton. Moreover, 6 pseudogenes and 8 lncRNAs were identified to potentially inhibit hsa-miR-363-3p-SPOCK2 axis in ovarian cancer. CONCLUSIONS: Collectively, we elucidate a regulatory role of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway in progression of ovarian cancer, which may provide effective therapeutic approaches and promising prognostic biomarkers for ovarian cancer. MATERIALS AND METHODS: Differentially expressed genes (DEGs) in ovarian cancer were first screened using GSE12470, after which DEGs expression were validated using GEPIA. Kaplan-Meier analysis was employed to assess the prognostic values. Potential miRNAs were predicted by seven target prediction databases, and upstream lncRNAs and pseudogenes of hsa-miR-363-3p were forecasted through miRNet or starBase. UALCAN and starBase were used to obtain the co-expressed genes of SPOCK. Enrichment analysis for these co-expressed genes was performed by Enrichr.


Assuntos
MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Proteoglicanas/metabolismo , Pseudogenes/fisiologia , RNA Longo não Codificante/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteoglicanas/genética , Pseudogenes/genética , RNA Longo não Codificante/genética , Transcriptoma
13.
PeerJ ; 7: e7163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338255

RESUMO

BACKGROUND: It is known that secreted protein acidic and cysteine rich (osteonectin), cwcv and kazal-like domains proteoglycan 2 (SPOCK2) plays a significant role in the development and progression of several human cancers; however, the role of SPOCK2 in prostate cancer (PCa) remains unclear. This study aimed to find the role and mechanism of SPOCK2 in the development and progression of PCa. METHODS: The messenger ribonucleic acid (mRNA) expression of SPOCK2 in PCa tissue was detected by real-time polymerase chain reaction (PCR). Upregulation of the SPOCK2 gene was achieved using the DU145 and LNCaP cells by transfecting the cells with SPOCK2 recombinant fragment. Cell invasion and migration ability were detected by transwell chamber and wound healing assay. The expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase 2 (MMP2) in the cells was detected by Western Blot and zymography gel assay. RESULTS: The mRNA level of SPOCK2 was significantly lower in the PCa tissue compared to benign prostate hyperplasia. Upregulation of SPOCK2 inhibited cell invasion and migration in DU145 and LNCaP cells, inhibited the expression of MT1-MMP and MMP2 and, inhibited activation of MMP2 in DU145 and LNCaP cells. CONCLUSION: SPOCK2 is associated with the progression of PCa. Upregulation of SPOCK2 can inhibit PCa cell invasion and metastasis by decreasing MT1-MMP and MMP2 gene expression and decreasing MMP2 protein activation.

14.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31341044

RESUMO

Proteoglycans function not only as structural components of the extracellular compartment but also as regulators of various cellular events, including cell migration, inflammation, and infection. Many microbial pathogens utilize proteoglycans to facilitate adhesion and invasion into host cells. Here we report a secreted form of a novel heparan sulfate proteoglycan that functions against virus infection. The expression of SPOCK2/testican-2 was significantly induced in virus-infected lungs or in interferon (IFN)-treated alveolar lung epithelial cells. Overexpression from a SPOCK2 expression plasmid alone or the treatment of cells with recombinant SPOCK2 protein efficiently blocked influenza virus infection at the step of viral attachment to the host cell and entry. Moreover, mice treated with purified SPOCK2 were protected against virus infection. Sialylated glycans and heparan sulfate chains covalently attached to the SPOCK2 core protein were critical for its antiviral activity. Neuraminidase (NA) of influenza virus cleaves the sialylated moiety of SPOCK2, thereby blocking its binding to the virus. Our data suggest that IFN-induced SPOCK2 functions as a decoy receptor to bind and block influenza virus infection, thereby restricting entry of the infecting virus into neighboring cells.IMPORTANCE Here we report a novel proteoglycan protein, testican-2/SPOCK2, that prevents influenza virus infection. Testican-2/SPOCK2 is a complex type of secreted proteoglycan with heparan sulfate GAG chains attached to the core protein. SPOCK2 expression is induced upon virus infection or by interferons, and the protein is secreted to an extracellular compartment, where it acts directly to block virus-cell attachment and entry. Treatment with purified testican-2/SPOCK2 protein can efficiently block influenza virus infection in vitro and in vivo We also identified the heparan sulfate moiety as a key regulatory module for this inhibitory effect. Based on its mode of action (cell attachment/entry blocker) and site of action (extracellular compartment), we propose testican-2/SPOCK2 as a potential antiviral agent that can efficiently control influenza virus infection.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Proteoglicanas/genética , Viroses/etiologia , Viroses/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Proteoglicanas de Heparan Sulfato , Humanos , Vírus da Influenza A/efeitos dos fármacos , Camundongos , Proteoglicanas/metabolismo , Proteoglicanas/farmacologia , Proteínas Recombinantes/farmacologia , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Reprod Sci ; : 1933719119834341, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832559

RESUMO

Abnormal expression of SPARC (osteonectin), cwcv and kazal-like domains proteoglycan 2 (SPOCK2) plays a significant role in the development and progression of various human cancers, yet a relationship between SPOCK2 and endometrial cancer (EC) has not been reported. Here, we assessed the potential role and mechanism by which SPOCK2 acts in the pathogenesis and progression of EC. First, protein expression of SPOCK2 in EC tissue from patients was detected by immunohistochemistry and associated clinical data were analyzed. Then, HEC-1A and Ishikawa cells were transfected with an adenoviral vector containing an SPOCK2 recombinant fragment and the biological behavior of transfected cells was observed. Finally, the expression of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP2 in the transfected cells was detected by Western blot and zymography gel assay to analyze the effect of SPOCK2 on the regulation of the MT1-MMP/MMP2 pathway. We found that there was significantly less SPOCK2 protein expression in the EC tissue than in the normal endometrium tissue, and lack of SPOCK2 protein expression in EC tissue was associated with distant metastasis and myometrial invasion. Upregulation of SPOCK2 in HEC-1A and Ishikawa cells inhibited cell proliferation, invasion, adhesion, and apoptosis. Upregulation of SPOCK2 inhibited the expression of MT1-MMP and MMP2 and activation of MMP2 in HEC-1A and Ishikawa cells. Collectively, our data indicated that SPOCK2 contributed to the progression of EC by regulating the biological behavior of cancer cells, which is achieved partly through regulating protein expression of MT1-MMP and MMP2 and activation of MMP2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA