Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800024

RESUMO

The endocannabinoid system (ECS) is involved in the modulation of several basic biological processes, having widespread roles in neurodevelopment, neuromodulation, immune response, energy homeostasis and reproduction. In the adult central nervous system (CNS) the ECS mainly modulates neurotransmitter release, however, a substantial body of evidence has revealed a central role in regulating neurogenesis in developing and adult CNS, also under pathological conditions. Due to the complexity of investigating ECS functions in neural progenitors in vivo, we tested the suitability of the ST14A striatal neural progenitor cell line as a simplified in vitro model to dissect the role and the mechanisms of ECS-regulated neurogenesis, as well as to perform ECS-targeted pharmacological approaches. We report that ST14A cells express various ECS components, supporting the presence of an active ECS. While CB1 and CB2 receptor blockade did not affect ST14A cell number, exogenous administration of the endocannabinoid 2-AG and the synthetic CB2 agonist JWH133 increased ST14A cell proliferation. Phospholipase C (PLC), but not PI3K pharmacological blockade negatively modulated CB2-induced ST14A cell proliferation, suggesting that a PLC pathway is involved in the steps downstream to CB2 activation. On the basis of our results, we propose ST14A neural progenitor cells as a useful in vitro model for studying ECS modulation of neurogenesis, also in prospective in vivo pharmacological studies.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/fisiologia , Receptores de Canabinoides/metabolismo , Animais , Canabinoides/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Corpo Estriado/citologia , Estrenos/farmacologia , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Pirrolidinonas/farmacologia , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética , Fosfolipases Tipo C/antagonistas & inibidores
2.
J Neuroinflammation ; 17(1): 290, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023623

RESUMO

BACKGROUND: Evidence shows significant heterogeneity in astrocyte gene expression and function. We previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts protective effects on whole brain primary cultured rat astrocytes treated with 3-nitropropionic acid (3NP), a mitochondrial toxin widely used as an in vitro model of Huntington's disease (HD). Therefore, we now investigated 3NP and BDNF effects on astrocytes from two areas involved in HD: the striatum and the entire cortex, and their involvement in neuron survival. METHODS: We prepared primary cultured rat cortical or striatal astrocytes and treated them with BDNF and/or 3NP for 24 h. In these cells, we assessed expression of astrocyte markers, BDNF receptor, and glutamate transporters, and cytokine release. We prepared astrocyte-conditioned medium (ACM) from cortical and striatal astrocytes and tested its effect on a cellular model of HD. RESULTS: BDNF protected astrocytes from 3NP-induced death, increased expression of its own receptor, and activation of ERK in both cortical and striatal astrocytes. However, BDNF modulated glutamate transporter expression differently by increasing GLT1 and GLAST expression in cortical astrocytes but only GLT1 expression in striatal astrocytes. Striatal astrocytes released higher amounts of tumor necrosis factor-α than cortical astrocytes in response to 3NP but BDNF decreased this effect in both populations. 3NP decreased transforming growth factor-ß release only in cortical astrocytes, whereas BDNF treatment increased its release only in striatal astrocytes. Finally, we evaluated ACM effect on a cellular model of HD: the rat striatal neuron cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15). Neither striatal nor cortical ACM modified the viability of Q15 cells. Only ACM from striatal astrocytes treated with BDNF and ACM from 3NP + BDNF-treated striatal astrocytes protected Q120 cells, whereas ACM from cortical astrocytes did not. CONCLUSIONS: Data suggest that cortical and striatal astrocytes respond differently to mitochondrial toxin 3NP and BDNF. Moreover, striatal astrocytes secrete soluble neuroprotective factors in response to BDNF that selectively protect neurons expressing mutant huntingtin implicating that BDNF modulation of striatal astrocyte function has therapeutic potential against neurodegeneration.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/toxicidade , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/biossíntese , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Proteína Huntingtina/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/efeitos dos fármacos , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Wistar
3.
Cells ; 8(9)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450785

RESUMO

A higher incidence of diabetes was observed among family members of individuals affected by Huntington's Disease with no follow-up studies investigating the genetic nature of the observation. Using a genome-wide association study (GWAS), RNA sequencing (RNA-Seq) analysis and western blotting of Rattus norvegicus and human, we were able to identify that the gene family of sortilin receptors was affected in Huntington's Disease patients. We observed that less than 5% of SNPs were of statistical significance and that sortilins and HLA/MHC gene expression or SNPs were associated with mutant huntingtin (mHTT). These results suggest that ST14A cells derived from R. norvegicus are a reliable model of HD, since sortilins were identified through analysis of the transcriptome in these cells. These findings help highlight the genes involved in mechanisms targeted by diabetes drugs, such as glucose transporters as well as proteins controlling insulin release related to mHTT. To the best of our knowledge, this is the first GWAS using RNA-Seq data from both ST14A rat HD cell model and human Huntington's Disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Doença de Alzheimer/genética , Diabetes Mellitus/genética , Antígenos HLA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Polimorfismo de Nucleotídeo Único , Animais , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Modelos Biológicos , Mutação , Ratos , Análise de Sequência de RNA , Regulação para Cima
4.
Mol Cell Neurosci ; 94: 41-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529228

RESUMO

α-Melanocyte stimulating hormone (α-MSH) is a melanocortin which exerts potent anti-inflammatory and anti-apoptotic effects. Melanocortin 4 receptors (MC4R) are abundantly expressed in the brain and we previously demonstrated that [Nle(4), D-Phe(7)]melanocyte-stimulating hormone (NDP-MSH), an α-MSH analogue, increased expression of brain derived-neurotrophic factor (BDNF), and peroxisome proliferator-activated receptor-γ (PPAR-γ). We hypothesized that melanocortins could affect striatal cell survival through BDNF and PPAR-γ. First, we determined the expression of these factors in the striatum. Acute intraperitoneal administration (0.5 mg/kg) of α-MSH increased the levels of BDNF mRNA in rat striatum but not in rat cerebral cortex. Also, protein expression of PPAR-γ and MC4R was increased by acute treatment with α-MSH in striatum but not in cortex. No changes were observed by 48 h treatment. Next, we evaluated melanocortins effect on neuron and glial survival. 3-nitropropionic acid (3-NP), which is known to induce striatal degeneration, was used to induce cell death in the rat striatal cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15), in primary cultured astrocytes, and in BV2 cells. NDP-MSH protected Q15 cells, astrocytes and BV2 cells from death by 3-NP whereas it did not fully protect Q120 cells. Protection of Q15 cells and astrocytes was blocked by a MC4R specific inhibitor (JKC-363) and a PPAR-γ antagonist (GW9662). The BDNF receptor antagonist (ANA-12) abolished NDP-MSH protective effect in astrocytes but not in Q15 cells. We demonstrate for the first time that melanocortins, acting through PPAR-γ and BDNF, protect neurons and glial cells from 3-NP toxicity.


Assuntos
Astrócitos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nitrocompostos/farmacologia , Propionatos/farmacologia , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônios Estimuladores de Melanócitos/efeitos dos fármacos , Ratos Wistar
5.
J Steroid Biochem Mol Biol ; 167: 23-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27702664

RESUMO

The cytochrome P450 aromatase is involved in the last step of sex hormones biosynthesis by converting androgens into estrogens. The human enzyme is highly polymorphic and literature data correlate aromatase single nucleotide polymorphisms to the onset of pathologies such as breast cancer and neurodegenerative diseases. The aims of this study were i) to study the influence of the mutations R264C and R264H on the structure-function of the enzyme also upon phosphorylation by selected kinases and ii) to compare the activity of the variants to that of aromatase wild type in two different cell lines. Far-UV circular dichroism spectroscopy, thermal denaturation experiments and CO-binding assay showed that the two polymorphic variants are correctly folded. Steady-state kinetics experiments showed that rArom R264C and R264H exhibit a 1.5 and 3.4 folds lower catalytic efficiency, respectively, when compared to the wild type protein. Since R264 is part of the consensus motif of PKA and PKG1, phosphorylation experiments were performed to study the effect on aromatase function. Phosphorylation by PKA caused a decrease in activity by 36.2%, 49.3% and 27.9% in the wild type, R264C and R264H proteins respectively. Phosphorylation by PKG1 was also found to decrease the activity by 30.3%, 30.5% and 15.4% in the wild type, R264C and R264H proteins respectively. Experiments performed on the three full-length proteins expressed in human MCF-7 breast cancer cells and rat ST14A neuronal cells showed that, depending on the cell line used, the activity of the proteins is different, implicating different cellular mechanisms modulating aromatase activity. This work demonstrate that R264 polymorphism causes an intrinsic alteration of aromatase activity together with a different consensus for phosphorylation by different kinases, indicating that estrogen production can be different when such mutations are present. These findings are significant in understanding the onset and treatment of pathologies in which aromatase has been shown to be involved.


Assuntos
Aromatase/metabolismo , Polimorfismo Genético , Motivos de Aminoácidos , Animais , Aromatase/química , Neoplasias da Mama/metabolismo , Catálise , Linhagem Celular , Dicroísmo Circular , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Células MCF-7 , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Neurônios/metabolismo , Fosforilação , Ratos , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA