Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38929067

RESUMO

BACKGROUND: Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS: Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS: SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-ß-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION: SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.

2.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38830458

RESUMO

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Assuntos
Anticonvulsivantes , Fármacos Neuroprotetores , Peptídeos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Venenos de Escorpião , Convulsões , Animais , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Pentilenotetrazol , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Temperatura Alta , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA