Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chemosphere ; 363: 142810, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986780

RESUMO

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) cause significant environmental concerns. Atmospheric PCDD/Fs permeate water bodies and other ecosystems through wet and dry deposition. In an urban site, dry deposition flux samples of gaseous phase PCDD/Fs were collected by a water surface sampler (WSS) operated between June 2022 and June 2023. There is a conspicuous absence of literature on the direct measurement of dry deposition flux levels in the gaseous phase of PCDD/Fs. In the study, PCDD/Fs in the gas phase reaching the WSS dissolved in the water according to Henry's Law. The PCDD/Fs in the water were transferred to an XAD-2 resin column, sorbing the dissolved PCDD/Fs. The average monthly gas phase dry deposition flux was 34.07 ± 9.35 pg/m2-day (7.35 ± 2.16 pg I-TEQ/m2-day). The highest flux was measured in March (49.53 pg/m2-day), and the lowest was in August (18.64 pg/m2-day). These values indicated the direct flux from air to water. The atmospheric concentration of the gas-phase ranged from 68.38 to 126.88 fg/m3 (13.22-25.01 fg I-TEQ/m3). Dry deposition fluxes and concentrations of atmospheric PCDD/Fs were bigger in the colder months than in the warmer months. This was probably due to a significant increase in residential heating during the colder months, decreased photochemical reactions, and lower mixing heights. Regarding congeners in the dry deposition flux and concentration values in I-TEQ units, 2,3,7,8-TCDD compound predominated with the proportions of 31.61 ± 7.76% and 29.09 ± 12.34%, respectively. Concurrently measured dry deposition flux (Fg) and ambient air concentration (Cg) of PCDD/Fs were considered in the determination of mass transfer coefficient (MTC = Fg/Cg) calculation for each PCDD/F congener. The average MTC for targeted 17 PCDD/Fs was 0.45 ± 0.15 cm/s, and it fluctuated between 0.89 ± 0.30 cm/s for 2,3,7,8-TCDF and 0.2 ± 0.16 cm/s for OCDD.

2.
Environ Sci Pollut Res Int ; 31(24): 35429-35441, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727973

RESUMO

An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200 µm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3 µg/g and 43.2 µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985 µg/g and 846 µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Monitoramento Ambiental , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poeira/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Retardadores de Chama/análise , Poluentes Atmosféricos/análise
3.
J Hazard Mater ; 471: 134277, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657505

RESUMO

This study investigates the presence of biocides and other semi-volatile organic compounds (SVOCs) in cleaning products used in daycare centers and health impact through ingestion of settled dust by young children. In Paris metropolitan area, 106 daycares area were investigated between 2019-2022. Fifteen substances were analyzed in settled indoor dust by gas chromatography-tandem mass spectrometry. Detection rates and concentrations ranged from 5 to 100%, and

Assuntos
Poluição do Ar em Ambientes Fechados , Creches , Desinfetantes , Poeira , Compostos Orgânicos Voláteis , Poeira/análise , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Desinfetantes/análise , Lactente , Saúde Pública , Monitoramento Ambiental , Pré-Escolar
4.
Environ Sci Technol ; 58(11): 5047-5057, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437595

RESUMO

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , California , Aerossóis/análise
5.
Sci Total Environ ; 915: 169962, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38219999

RESUMO

BACKGROUND: Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. OBJECTIVES: Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. METHODS: A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. RESULTS: Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. CONCLUSION: This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.


Assuntos
Poluentes Ambientais , Bócio Nodular , Piretrinas , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Compostos Orgânicos Voláteis , Humanos , Câncer Papilífero da Tireoide , Bócio Nodular/patologia , Estudos de Casos e Controles , Teorema de Bayes , Algoritmos , Aprendizado de Máquina
6.
Environ Sci Technol ; 57(49): 20678-20688, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019971

RESUMO

Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quantified daily excretion of 17 urinary metabolites (µg/day) for phthalates and phthalate alternatives in nine participants during 5 days. On Day 0, baseline daily excretion was determined in participants' urine. Starting on Day 1, participants refrained from eating phthalate-heavy foods and using personal care products. On Days 3 and 4, participants wore precleaned clothing as an exposure intervention. We observed a reduction in the daily excretion of phthalates during the intervention; mono-n-butyl phthalate, monoisobutyl phthalate (MiBP), and monobenzyl phthalate were significantly reduced by 35, 38, and 56%, respectively. Summed metabolites of di(2-ethylhexyl)phthalate (DEHP) were also reduced (27%; not statistically significant). A similar reduction among phthalate alternatives was not observed. The daily excretion of MiBP during the nonintervention period strongly correlated with indoor air concentrations of diisobutyl phthalate (DiBP), suggesting that inhalation and transdermal uptake of DiBP from the air in homes are dominant exposure pathways. The results indicate that precleaned clothing can significantly reduce environmental exposure to phthalates and phthalate alternatives.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Plastificantes , Poluentes Ambientais/análise , Projetos Piloto , Ácidos Ftálicos/metabolismo , Exposição Ambiental/análise , Vestuário
8.
JMIR Res Protoc ; 12: e51020, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831504

RESUMO

BACKGROUND: Semivolatile organic compounds (SVOCs) comprise several different chemical families used mainly as additives in many everyday products. SVOCs can be released into the air as aerosols and deposit on particulate matter during use by dispersion, evaporation, or abrasion. Phthalates are SVOCs of growing concern due to their endocrine-disrupting effects. Human data on the absorption, distribution, metabolism, and excretion (ADME) of these compounds upon inhalation are almost nonexistent. OBJECTIVE: The goal of this study is to develop a method for repeated inhalation exposures to SVOCs to characterize their ADME in humans. METHODS: We will use diethylhexyl phthalate (DEHP), a major indoor air pollutant, as a model SVOC in this novel protocol. The Swiss official Commission on Ethics in Human Research, Canton de Vaud, approved the study on October 14, 2020 (project-ID 2020-01095). Participants (n=10) will be repeatedly exposed (2 short daily exposures over 4 days) to isotope-labeled DEHP (DEHP-d4) to distinguish administered exposures from background exposures. DEHP-d4 aerosols will be generated with a small, portable, aerosol-generating device. Participants will inhale DEHP-d4-containing aerosols themselves with this device at home. Air concentrations of the airborne phthalates will be less than or equal to their occupational exposure limit (OEL). DEHP-d4 and its metabolites will be quantified in urine and blood before, during, and after exposure. RESULTS: Our developed device can generate DEHP-d4 aerosols with diameters of 2.5 µm or smaller and a mean DEHP-d4 mass of 1.4 (SD 0.2) µg per puff (n=6). As of May 2023, we have enrolled 5 participants. CONCLUSIONS: The portable device can be used to generate phthalate aerosols for repeated exposure in human studies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51020.

9.
Environ Sci Technol ; 57(43): 16435-16445, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37853753

RESUMO

Traditional global emission inventories classify primary organic emissions into nonvolatile organic carbon and volatile organic compounds (VOCs), excluding intermediate-volatility and semivolatile organic compounds (IVOCs and SVOCs, respectively), which are important precursors of secondary organic aerosols. This study establishes the first global anthropogenic full-volatility organic emission inventory with chemically speciated or volatility-binned emission factors. The emissions of extremely low/low-volatility organic compounds (xLVOCs), SVOCs, IVOCs, and VOCs in 2015 were 13.2, 10.1, 23.3, and 120.5 Mt, respectively. The full-volatility framework fills a gap of 18.5 Mt I/S/xLVOCs compared with the traditional framework. Volatile chemical products (VCPs), domestic combustion, and on-road transportation sources were dominant contributors to full-volatility emissions, accounting for 30, 30, and 12%, respectively. The VCP and on-road transportation sectors were the main contributors to IVOCs and VOCs. The key emitting regions included Africa, India, Southeast Asia, China, Europe, and the United States, among which China, Europe, and the United States emitted higher proportions of IVOCs and VOCs owing to the use of cleaner fuel in domestic combustion and more intense emissions from VCPs and on-road transportation activities. The findings contribute to a better understanding of the impact of organic emissions on global air pollution and climate change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , China , Aerossóis/análise , Monitoramento Ambiental
10.
J Hazard Mater ; 459: 132202, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562352

RESUMO

Household dust contains a wide variety of semi-volatile organic compounds (SVOCs) that may pose health risks. We developed a method integrating non-targeted analysis (NTA) and targeted analysis (TA) to identify SVOCs in indoor dust. Based on a combined use of gas and liquid chromatography with high-resolution mass spectrometry, an automated, time-efficient NTA workflow was developed, and high accuracy was observed. A total of 128 compounds were identified at confidence level 1 or 2 in NIST standard reference material dust (SRM 2585). Among them, 113 compounds had not been reported previously, and this suggested the value of NTA in characterizing contaminants in dust. Additionally, TA was done to avoid the loss of trace compounds. By integrating data obtained from the NTA and TA approaches, SVOCs in SRM 2585 were prioritized based on exposure and chemical toxicity. Six of the top 20 compounds have never been reported in SRM 2585, including melamine, dinonyl phthalate, oxybenzone, diheptyl phthalate, drometrizole, and 2-phenylphenol. Additionally, significant influences of analytical instruments and sample preparation on NTA results were observed. Overall, the developed method provided a powerful tool for identifying SVOCs in indoor dust, which is necessary to obtain a more complete understanding of chemical exposures and risks in indoor environments.

11.
Environ Sci Technol ; 57(28): 10308-10318, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37419883

RESUMO

Nonroad agricultural machinery (NRAM) emissions constitute a significant source of air pollution in China. Full-volatility organics originating from 19 machines under 6 agricultural activities were measured synchronously. The diesel-based emission factors (EFs) for full-volatility organics were 4.71 ± 2.78 g/kg fuel (average ± standard deviation), including 91.58 ± 8.42% volatile organic compounds (VOCs), 7.94 ± 8.16% intermediate-volatility organic compounds (IVOCs), 0.28 ± 0.20% semivolatile organic compounds (SVOCs), and 0.20 ± 0.16% low-volatility organic compounds (LVOCs). Full-volatility organic EFs were significantly reduced by stricter emission standards and were the highest under pesticide spraying activity. Our results also demonstrated that combustion efficiency was a potential factor influencing full-volatility organic emissions. Gas-particle partitioning in full-volatility organics could be affected by multiple factors. Furthermore, the estimated secondary organic aerosol formation potential based on measured full-volatility organics was 143.79 ± 216.80 mg/kg fuel and could be primarily attributed to higher-volatility-interval IVOCs (bin12-bin16 contributed 52.81 ± 11.58%). Finally, the estimated emissions of full-volatility organics from NRAM in China (2021) were 94.23 Gg. This study provides first-hand data on full-volatility organic EFs originating from NRAM to facilitate the improvement of emission inventories and atmospheric chemistry models.


Assuntos
Poluentes Atmosféricos , Praguicidas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Aerossóis/análise
12.
Regul Toxicol Pharmacol ; 143: 105463, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516303

RESUMO

Semi-volatile organic compounds (SVOCs) are being increasingly studied in indoor air. The absence of health-based inhalation exposure guidelines for most SVOCs impedes the interpretation of indoor air concentrations from a health risk context. To accelerate the derivation of screening values for a large number of SVOCs, a tiered framework was developed to evaluate and adjust published hazard assessments for SVOCs to calculate benchmarks relevant for evaluation of inhalation risk. Inhalation screening values were derived for 43 SVOCs considered in this study, most of which required extrapolation from oral exposure guidelines. The screening values were compared to published SVOC concentrations in homes in Canada to evaluate the potential health risks of chronic exposure to SVOCs in indoor residential environments. SVOCs that could be prioritized for further evaluation were dibutyl phthalates (DBP), di(2-ethylhexyl) phthalate (DEHP) and polybrominated diphenyl ethers (PBDEs). The framework could be applied more broadly in the future to derive screening values for other non-traditional indoor air contaminants with limited inhalation hazard data or assessments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Exposição por Inalação/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Dibutilftalato/análise
13.
MethodsX ; 11: 102252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37342804

RESUMO

This work describes the development of a robust analytical methodology for the simultaneous determination of 50 semi-volatile organic compounds (SVOCs) in wastewater effluent samples by solid-phase extraction (SPE) followed by gas chromatography coupled to mass spectrometry (GC-MS) analysis. In this work, we studied extensively whether the validated SPE method used for the analysis of polar compounds in wastewaters could be extended to the analysis of non-polar compounds in the same analytical run. To that aim, the effect of different organic solvents in the SPE process (i.e., sample conditioning prior to SPE, elution solvent and evaporation steps) was evaluated. In this sense, the addition of methanol to wastewater samples before the extraction, the use of hexane:toluene (4:1, v/v) mixture for the quantitative elution of target compounds, and the addition of isooctane during the evaporation were required to minimize analyte losses during SPE and enhance extraction yields. Overall, the developed methodology showed a good performance for the determination of 50 SVOCs, and was further applied to the analysis of real wastewater effluent samples.•A validated SPE method for polar compounds was extended to the analysis of non-polar compounds.•Elution with hex:tol (4:1, v/v) and the addition of isooctane during the evaporation yield good recoveries.•The developed methodology was suitable for the determination of 50 SVOCs in aqueous samples.

14.
Environ Sci Technol ; 57(25): 9224-9233, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294067

RESUMO

The use of passive air samplers (PAS) for semi-volatile organic compounds (SVOCs) continues to expand. To advance quantitative understanding of uptake kinetics, we calibrated the XAD-PAS, using a styrene-divinylbenzene sorbent, through a year-long side-by-side deployment with an active sampler. Twelve XAD-PASs, deployed in June 2020, were retrieved at 4-week intervals, while gas phase SVOCs were quantified in 48 consecutive week-long active samples taken from June 2020 to May 2021. Consistent with XAD's high uptake capacity, even relatively volatile SVOCs, such as hexachlorobutadiene, displayed linear uptake throughout the entire deployment. Sampling rates (SRs) range between 0.1 and 0.6 m3 day-1 for 26 SVOCs, including brominated flame retardants, organophosphate esters, and halogenated methoxylated benzenes. SRs are compared with experimental SRs reported previously. The ability of the existing mechanistic uptake model PAS-SIM to reproduce the observed uptake and SRs was evaluated. Agreement between simulated and measured uptake curves was reasonable but varied with compound volatility and the assumed stagnant air layer boundary thickness. Even though PAS-SIM succeeds in predicting the SR range for the studied SVOCs, it fails to capture the volatility dependence of the SR by underestimating the length of the linear uptake period and by failing to consider the kinetics of sorption.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Calibragem , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Cinética
15.
Huan Jing Ke Xue ; 44(3): 1328-1335, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922194

RESUMO

The semi-/intermediate volatile organic compound (S/IVOCs) emissions inventory of Jiangsu province was established in 2019 using the activity data of various S/IVOCs emission sources, emission factors, and an estimation method. S/IVOCs emissions for each source and city in Jiangsu province were analyzed. The total amount of S/IVOCs emissions in Jiangsu province in 2019 was 637.31 Gg. Industrial sources were the major source of total S/IVOCs emissions accounting for 63.42% (404.20 Gg), followed by residential on-road mobile sources (22.23%), and off-road mobile sources accounted for the least (0.06%). Suzhou had the highest S/IVOCs emissions in 2019, accounting for 25.40% (161.86 Gg) of the total S/IVOCs emissions in Jiangsu province. The S/IVOCs emission intensity per unit area in Suzhou was the highest, reaching 18.70 t·km-2, and the emission intensity per unit GDP was the highest in Lianyungang (22.45 t·100 million yuan-1). The spatial distribution map revealed that S/IVOCs emissions in southern Jiangsu were relatively higher. The difference in the total emission of S/IVOCs, emission intensity per unit area, and emission intensity per unit of GDP were quite different among cities. The uncertainty range of S/IVOCs emissions was -88.46%-224.38% in Jiangsu province in 2019. The uncertainty range of biomass burning sources was the largest (-96.40%-277.17%).

16.
Chemosphere ; 323: 138204, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828107

RESUMO

The development-oriented anthropogenic activities have led to intensive increase in emission of various organic pollutants, which contribute considerably to human health risk. In the present study, chemical, physical and spectral characterisation of fine particulate matter (PM2.5), collected at Faridabad city, in northern India, were examined. Seasonal variation of organic compounds [n-alkanes, polyaromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs)], and potential health risk of Polyaromatic hydrocarbons (PAHs) exposure using toxic equivalency potential (TEQ) approach had been assessed. These showed seasonal average values ranging from 156.4 ± 57.0 ng/m3 to 217.6 ± 72.9 ng/m3, 98.0 ± 21.4 ng/m3 to 177.8 ± 72.8 ng/m3, and 30.9 ± 11.9 ng/m3 to 82.5 ± 29.2 ng/m3, respectively, with the highest value for winter. It is noteworthy that unlike, n-alkanes and PAEs, PAHs were least during spring. The high molecular weight PAHs (BaP, BkF, DahA and IcdP) were found to exhibit higher TEQ values (ranging from 0.7 to 9.7) despite of their lower concentrations. The PAH diagnostic ratio, carbon preference index and total index revealed the enhanced impact of biogenic sources of emissions in comparison to diesel emission sources during winter.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado/análise , Índia , Alcanos , China
17.
Environ Sci Technol ; 57(8): 3260-3269, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36796310

RESUMO

Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Dietilexilftalato/análise , Poluentes Atmosféricos/análise , Gases/análise , Culinária
18.
Curr Environ Health Rep ; 10(2): 84-98, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821032

RESUMO

PURPOSE OF REVIEW: We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS: Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Misturas Complexas
19.
Toxics ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36548563

RESUMO

Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.

20.
Atmos Chem Phys ; 22(21): 14377-14399, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36506646

RESUMO

Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH4 +) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA